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Abstract

This thesis presents a comprehensive investigation into relaxation techniques, focus-
ing on the impact of Guided Imagery (GI) on cognitive and emotional functions, and
exploring the potential applications of machine learning classifiers in therapy support
and brain-computer interfaces (BCI). The study, which included 60 right-handed male
participants aged 17-24, illuminates GI’s capacity to enhance mental well-being and
focus attention. Received findings demonstrate the effectiveness of GI in enhancing
cognitive performance and emotional balance by modulating alpha power and at-
tention regulation. Moreover, the study explores the complex connections between
variables, laying the groundwork for tailor-made interventions that address the diverse
aspects of cognitive and emotional functioning.

The content has been reorganized to include a detailed review of mindfulness
practices and their classification, an exploration of guided imagery, and a thorough
examination of the effects of relaxation techniques on cognitive functions and alpha
oscillations. The introduction section now provides a deeper dive into these topics,
establishing a solid foundation for the subsequent research. These modifications and
additions ensure that the thesis not only addresses the initial research questions more
comprehensively but also aligns with the reviewers’ feedback, enhancing the depth of
the study. While acknowledging limitations such as the relatively modest sample size
and the exclusive focus on healthy male subjects, this study presents the potential
application of GI as an effective support tool for well-being and attention control.
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Streszczenie

Niniejsza praca prezentuje kompleksowe badanie dotyczące wpływu techniki relak-
sacyjnej - wyobraźni prowadzonej (GI) na funkcje poznawcze i emocjonalne. Do-
datkowym aspektem badania była eksploracja potencjalnych zastosowań klasyfika-
torów uczenia maszynowego (GLM) w wsparciu terapeutycznym i tworzeniu na tej
podstawie interfejsów mózg-komputer, które byłyby indywidualnie dopasowane do
potrzeb użytkownika. Badanie przeprowadzone na 60 praworęcznych mężczyznach w
wieku od 17 do 24 lat weryfikuje możliwości zastosowania GI w celu poprawy do-
brostanu psychicznego, zwłaszcza w indukowaniu stanu relaksu. Otrzymane wyniki
wykazują skuteczność GI w poprawie uwagi i równowagi emocjonalnej poprzez mod-
ulację mocy alfa i redukcję stresu. Ponadto badanie poszukuje zależności między
zmiennymi, w celu lepszego zrozumiania wpływ GI na funkcjonowanie poznawcze i
emocjonalne uczestników badania.

Zawartość pracy została zreorganizowana i rozbudowana w taki sposób, aby za-
wrzeć szczegółową analizę praktyk uważności i sposobów ich klasyfikacji. Zaprezen-
towany w pracy przegląd wpływu technik relaksacyjnych na funkcje poznawcze i oscy-
lacje alfa pozwala na lepszą argumentację postawionych w pracy hipotez. Wprowad-
zone modyfikacje zapewniają, że praca bardziej dokładnie opisuje schematy działania
technik relaksacyjnych, ale także odpowiada na sugestie recenzentów, wzbogacając
wnioski z badania. Mimo wskazanych w pracy ograniczeń, takich jak stosunkowo
niewielki rozmiar próby i wyłączne skupienie się na zdrowych mężczyznach, badanie
prezentuje potencjał GI jako skutecznego narzędzia wpływającego na zwiększenie
stanu relaksu oraz poprawę uwagi u badanych osób.
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Chapter 1

Introduction

1.1 Introduction

The study of relaxation techniques has become increasingly important in contem-

porary scientific research, given their potential to improve well-being and cognitive

functioning. This research focuses on exploring Guided Imagery (GI), a relaxation

method, to understand its effectiveness in promoting relaxation and enhancing at-

tentional control. The aim was to verify if Guided Imagery has the potential to

induce relaxation, and second, what is their impact on attentional mechanisms. Our

theoretical framework suggests that changes in attentional control may be linked to

alterations in alpha wave activity, which we intend to investigate through electroen-

cephalogram (EEG) readings during Guided Imagery sessions. Our deliberations are

grounded in a comprehensive review of existing literature on relaxation techniques,

aiming to elucidate the current understanding of their effects on cognitive functions.

The exploration of relaxation techniques dates back centuries, with contemplative

traditions such as Buddhism and Yoga emphasizing the importance of mental fo-

cus, clarity, and emotional regulation. Within these traditions, practices such as

meditation and visualization have been employed as tools for achieving inner peace,
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heightened awareness, and spiritual growth. The modern scientific interest in relax-

ation techniques emerged in the mid-20th century, with researchers investigating their

potential therapeutic benefits for stress reduction, anxiety management, and overall

well-being. Numerous studies presented in the thesis investigated the effects of relax-

ation techniques on various aspects of cognitive functioning, such as attention, mem-

ory, and executive function. Research suggests that relaxation practices, particularly

mindfulness-based interventions (MBI), can lead to improvements in attentional con-

trol, cognitive performance, and emotional regulation. Furthermore, reviewed studies

examining the neural correlates of relaxation techniques have identified changes in

brainwave activity, particularly in alpha and theta oscillations, following mindfulness

practices. Alpha oscillations, which are associated with relaxed wakefulness and de-

creased mental activity, have been shown to increase during meditation and Guided

Imagery sessions, indicating a state of relaxation and heightened awareness. In con-

clusion, the relaxation techniques, particularly Guided Imagery (GI), show promise as

effective tools for promoting relaxation, enhancing attentional control, and improving

overall well-being. This thesis aims to present these findings through a combination

of theoretical frameworks, empirical research, and practical applications. Relaxation

practices offer valuable insights into the complex interplay between the mind, body,

and brain. While our understanding of relaxation techniques, including GI, continues

to evolve, further research is needed to explore their precise mechanisms of action,

optimal implementation strategies, and long-term effects on cognitive and emotional

health.

1.2 Exploration of relaxation techniques

Relaxation techniques have long been studied for their effectiveness in reducing stress

and promoting well-being (Jha et al., 2007; Scotland-Coogan & Davis, 2016; Sung,
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Roussanov, Nagubandi, & Golden, 2000). In the wake of the COVID-19 pandemic,

war across the border, the need for stress reduction strategies has become even more

critical, as individuals worldwide face not only physical health challenges but also

social, psychological, and economic consequences (Mamun, 2021; Mertens, Gerritsen,

Duijndam, Salemink, & Engelhard, 2020). Among the various relaxation methods

explored, Guided Imagery has emerged as a valuable approach that has been ex-

tensively investigated in the fields of healthcare, sports psychology, and stress man-

agement (Mellenthin, 2021; Shafer & Greenfield, 2000). The field of contemplative

science has witnessed a rapid surge in the exploration of how mindfulness impacts

cognitive functioning. This inquiry is deeply rooted in the historical emphasis within

contemplative traditions on honing concentration and perceptual clarity (Bishop et

al., 2004; Grabovac, Lau, & Willett, 2011; Hölzel et al., 2011; Lin, Tang, & Braver,

2022). Scientific investigations into mindfulness have been intricately linked to cog-

nition, with attention emerging as a central focus in theoretical models (Grabovac et

al., 2011; Lutz et al., 2008; Lutz, Jha, Dunne, & Saron, 2015; Shapiro, Carlson, Astin,

& Freedman, 2006; Lin et al., 2022; Vago & Silbersweig, 2012). Early research efforts

predominantly concentrated on exploring the intersection of mindfulness and atten-

tional abilities (Cahn & Polich, 2006; Teasdale, Segal, & Williams, 1995; Valentine &

Sweet, 1999). However, as the field evolved, interest expanded to encompass a broader

array of cognitive functions such as creativity and problem-solving, aiming to attain

a more nuanced understanding of the neurocognitive underpinnings of mindfulness

and its psychological benefits (Berkovich-Ohana, Glicksohn, Ben-Soussan, & Gold-

stein, 2017; Colzato, Szapora, Lippelt, & Hommel, 2017). Over the last two decades,

research efforts have primarily focused on two overarching goals: firstly, to elucidate

the relationship between mindfulness and cognitive functions, including identifying

shared neurocognitive processes and their respective limitations, and secondly, to as-

sess the efficacy of various forms of mindfulness training in modulating or enhancing
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cognitive abilities. Despite the substantial growth in empirical literature, achieving

these aims has proven challenging due to methodological inconsistencies and varied

findings across studies (Cahn & Polich, 2006; Teasdale et al., 1995; Valentine & Sweet,

1999).

1.3 A Review of Mindfulness Practice and Interven-

tion Classifications

Mindfulness is an umbrella term that can refer to a state of mind, a charactero-

logical trait, a form of contemplative practice, and a type of clinical intervention

(Lin et al., 2022). For instance, focused attention (FA), open monitoring (OM), and

loving-kindness (LK) meditation also known as compassion meditation are distinct

meditative practices, yet they are frequently grouped under the overarching label

"mindfulness meditation" (Lin et al., 2022; Fox et al., 2016; Manna et al., 2010).

In addition, there is technical diversity among mindfulness practices, including varia-

tions in the duration and intensity of meditation training, which can vary dramatically

across studies. There does not appear to be a common "standard" training interval,

as seen with Mindfulness-Based Interventions (MBIs) (e.g., 8 weeks). (Lin et al.,

2022). The duration of meditation studies ranged from as short as 1 or 2 weeks

to longer periods of 3 to 10 weeks. Interestingly, in the Sedlmeier’s meta-analysis

(Sedlmeier, Loße, & Quasten, 2018) it was found that for very short training periods

of 1 or 2 weeks, the effects of meditation seemed to be stronger compared to medium

durations of 3 or 4 weeks. From the literature review it is known that a single brief

induction may be insufficient to alter behavioral performance but can nonetheless af-

fect neural processing. This suggests that sustained training may be necessary before

mindfulness-induced plasticity translates to behavioral change (Bing-Canar, Pizzuto,

& Compton, 2016; Larson, Steffen, & Primosch, 2013; Lin et al., 2022). In mindfulness
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training studies, longitudinal repeated assessments (i.e. pre- vs. post-intervention)

are typically conducted to evaluate the impact of Mindfulness-Based Interventions

(MBIs). Despite this straightforward approach, there is significant ambiguity in

defining what constitutes an MBI (Cullen, 2011). Since the introduction of Jon

Kabat-Zinn’s influential Mindfulness-Based Stress Reduction (MBSR), there has been

a proliferation of interventions incorporating mindfulness (Kabat-Zinn, 2003). How-

ever, variations in teaching methods, training techniques, and practical application

of mindfulness make it difficult to establish a precise standard for MBIs. Sedlmeier’s

meta-analysis (Sedlmeier et al., 2018) examining the psychological impacts of med-

itation among healthy practitioners reveals that Insight meditation, also known as

Vipassana meditation, stands out with the most favorable outcomes across various

research dimensions. Insight meditation, rooted in Buddhist tradition, entails a me-

thodical and disciplined approach to observing the present moment, encompassing

thoughts, emotions, and bodily sensations with an non-reactive and non-judgmental

attitude. Insight meditation can be categorized as a form of open monitoring (OM)

meditation. The findings highlight the notable advantages of insight meditation, in-

dicating consistently larger effects compared to other meditation modalities, except

for compassion meditation. Insight meditation demonstrates substantial and uniform

impacts, particularly in domains of interpersonal relationships, cognitive abilities,

and self-perception. Furthermore, the practice exhibits positive influences on emo-

tional intelligence, general self-efficacy, stress management, and emotional regulation.

Moreover, insight meditation correlates with enhancements in cognitive functions, in-

cluding both convergent and divergent thinking, as well as heightened creativity and

mood regulation. As researchers continue to explore the impact of mindfulness med-

itation on cognitive function, there is growing evidence to support its role in promot-

ing a state of calm and improving overall cognitive performance. From reductions in

symptoms of anxiety and depression to alterations in brain wave activity indicative
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of enhanced attention and focus, the findings underscore the multi-faceted benefits of

integrating mindfulness meditation into wellness routines. Mindfulness encompasses

diverse practices that vary based on type (e.g., focused attention vs. open monitor-

ing) and modality (e.g., walking vs. sitting), yet it shares certain features related

to mental visualization and sensory involvement with Guided Imagery (GI). Eberth

meta-analysis (Eberth & Sedlmeier, 2012) of 39 controlled studies examining the

impact of mindfulness meditation on psychological factors reveals distinct patterns.

Specifically, Mindfulness-Based Stress Reduction (MBSR) programs demonstrate pro-

nounced effects on psychological well-being, stress reduction, mitigation of negative

emotions, and alleviation of anxiety. Conversely, investigations focusing solely on

mindfulness meditation without the structured MBSR framework, show the greatest

influence on variables related to mindfulness itself, such as self-reported mindful-

ness, attentional capacities, and anxiety levels. Furthermore, the analysis highlights

that MBSR primarily enhances psychological well-being, whereas “pure mindfulness

meditation” predominantly affects mindfulness-related constructs. Consequently, the

efficacy of mindfulness meditation varies across psychological domains, with MBSR

exhibiting greater efficacy in fostering psychological well-being and stress reduction,

while “pure mindfulness meditation” shows greater efficacy in enhancing mindfulness-

related variables. The analysis of "pure" meditation refers to meditation practices

that are distinct from mindfulness-based interventions such as Mindfulness-Based

Stress Reduction (MBSR). The program typically integrates mindfulness meditation,

body scan exercises, and yoga practices (Khoury et al., 2013), with the protocol com-

monly spanning an 8-week duration (Grossman, Niemann, Schmidt, & Walach, 2004).

Its aim is to enhance individuals’ consciousness of the present moment while equipping

them with better tools to manage life’s adversities. The term "pure" meditation serves

to demarcate traditional meditation methodologies, including Vipassana, Zen/Chan,

Shamatha, Vipshyana, Zazen, and other modalities, from interventions integrating
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mindfulness meditation within a structured regimen. "Pure" meditation typically

involves the direct application of meditation techniques devoid of supplementary el-

ements such as psychoeducation, cognitive therapy, or specific instructional courses

commonly featured in mindfulness-based interventions. This differentiation between

"pure" meditation and mindfulness-based interventions (MBI) is significant in the

context of the document’s meta-analysis, as it facilitates the examination of the spe-

cific impacts of traditional meditation practices on psychological parameters within

nonclinical populations. Therefore the impact of mindfulness meditation varies across

different psychological variables, with MBSR showing stronger effects on psychological

well-being and stress reduction, while pure mindfulness meditation has larger effects

on variables associated with mindfulness. Dahl, Lutz and Davidson (Dahl, Lutz, &

Davidson, 2015) proposed a classification of meditation into attentional, construc-

tive, and deconstructive families based on their primary cognitive mechanisms and

proposes a novel framework to understand how alterations in these processes might

impact levels of well-being. The attentional family focuses on attention regulation

and meta-awareness, which can lead to increased attentional stability and reduced

response time variability. The constructive family emphasizes nurturing harmonious

relations with others and cultivation of virtuous qualities, which may impact spe-

cific psychological factors and enhance dimensions of well-being. The deconstructive

family targets states of experiential fusion, maladaptive self-schema, and cognitive

reification through self-inquiry and insight practices. These practices aim to reverse

states of experiential fusion through the cultivation of meta-awareness, which is con-

sidered important for mental health.
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1.4 Exploring Guided Imagery

Whereas mindfulness prioritizes present-moment awareness and acceptance, GI leans

towards directive and goal-oriented approaches. A notable distinction between Guided

Imagery and mindfulness lies in their primary objectives and underlying mechanisms.

GI often prioritizes the creation of vivid mental images to influence behavior and

self-regulation by strengthening the association between thoughts and goal-oriented

actions. It frequently targets specific outcomes, such as boosting motivation, enhanc-

ing performance, or alleviating stress. Conversely, mindfulness practice centers on

cultivating present-moment awareness, accepting experiences without judgment, and

creating cognitive distance from negative thoughts and beliefs. Its goal is to foster

mindfulness characterized by heightened attention to thoughts, emotions, and bodily

sensations (Mellenthin, 2021; Mitchell, Martin, Baldwin, & Levens, 2021). While both

Guided Imagery and mindfulness can induce relaxation and reduce stress, Guided Im-

agery tends to be more prescriptive and outcome-oriented, often employing specific

imagery and prompts to shape behavior or emotional states. Guided Imagery is a

technique that harnesses the power of imagination to bring about changes in physical,

emotional, or spiritual aspects of an individual (Fitzgerald & LANGEVIN, 2009).

It is a common practice in psychotherapy where relaxation methods are combined

with the creation of mental images that engage all five senses: sight, sound, touch,

taste, and smell. The purpose of this technique is to intentionally create specific im-

ages that can alter physiological and emotional states using the client’s imagination

(La Roche, Batista, & D’Angelo, 2011). GI involves the use of mental imagery to

evoke sensory experiences and has gained significant attention as one of the oldest

healing resources. It has been defined as the internal experience of a perceptual event

in the absence of actual external stimuli, encompassing both sensory and cognitive

dimensions (Heinschel, 2002). Guided Imagery and meditation share similarities as

they both involve relaxation techniques and the use of mental imagery to influence
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physiological and emotional states. Both practices can be used to calm the mind

and body, reduce stress and anxiety, and promote a sense of well-being. In terms of

the FA (focused attention) and OM (open monitoring) types of meditation, Guided

Imagery can incorporate elements of both. During Guided Imagery, individuals may

focus their attention on specific mental images or scenarios (FA), while also remaining

open to the sensory experiences and emotions that arise during the visualization pro-

cess (OM). Therefore, Guided Imagery can be seen as a combination of FA and OM

meditation techniques, providing a structured framework for visualization while al-

lowing for open awareness of internal experiences (Mellenthin, 2021). Guided Imagery

is known to impact multiple physiological systems, such as respiratory, cardiovascu-

lar, metabolic, gastrointestinal, and immune systems, by modulating the activity

of the hypothalamic-pituitary-adrenal axis and promoting a state of relaxation and

well-being (De Paolis et al., 2019; Sabatinelli, Lang, Bradley, & Flaisch, 2006).

1.5 Executive Functions, Cognitive Functions, and

Attention Control

Attention and executive function are vital cognitive abilities in today’s complex and

demanding world. Extensive scientific research has underscored their crucial roles in

various aspects of cognitive processing and goal-directed behavior (Stevens & Bavelier,

2012). Attention allows us to selectively focus on relevant information while filter-

ing out distractions, making it essential for concentration, information processing,

and decision-making (Johnson & Proctor, 2004). Enhanced attention and executive

function have consistently been associated with improved academic results, job perfor-

mance, and decision-making abilities (Arrington, Kulesz, Francis, Fletcher, & Barnes,

2014; King & Haar, 2017; Petersen & Posner, 2012; Titz & Karbach, 2014). Conse-

quently, the enhancement of these cognitive functions is crucial in our information-
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rich environment and can benefit individuals and society as a whole (Trautwein,

Kanske, Böckler, & Singer, 2020). Executive functions refer to a set of higher-level

cognitive skills and capacities that are involved in planning, organizing, problem-

solving, decision-making, and controlling behavior. These functions are essential for

goal-directed behavior and the capacity to adapt and respond flexibly to changing

environmental demands (Diamond, 2013; Miyake et al., 2000). Controlled by the pre-

frontal cortex of the brain, these functions play a crucial role in goal-directed behavior

(Berkman, 2018). Cognitive functions, on the other hand, encompass a broad range

of mental processes such as perception, memory, language, reasoning, and attention.

These functions are essential for information processing and are closely linked to ex-

ecutive functions (Elliott, 2003). Attention control, as a component of cognitive func-

tions, refers to the ability to selectively focus on relevant information while inhibiting

irrelevant or distracting stimuli. It is essential for filtering out distractions and main-

taining focused attention on a specific task or a goal (Eysenck, Derakshan, Santos,

& Calvo, 2007; Mackie, Van Dam, & Fan, 2013). Several studies have explored the

relationship between executive functions, cognitive functions, and attention control

(Diamond, 2013; Miyake et al., 2000). These theories provide different perspectives

on how these functions operate and interact with each other in the brain, contribut-

ing to our understanding of cognitive processes and behavior. Miyake (Miyake et al.,

2000) proposed three interrelated subsystems of executive control: shifting, updat-

ing, and inhibition. The shifting aspect of executive control refers to the ability to

quickly and accurately switch attention between different stimuli or tasks. The up-

dating aspect involves the constant refreshing of information in the attentional area,

such as holding and updating working memory during a busy shift or keeping track

of orders and statuses in a restaurant setting. The inhibition aspect of executive

control refers to the cognitive ability to refrain from updating or shifting attention to

distracting stimuli. These subsystems of executive control work together to facilitate
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goal-directed behavior and adaptability. DDiamond describes executive functions as

a set of cognitive processes responsible for goal-directed behavior and the ability to

adapt and respond flexibly to changing environmental demands (Diamond, 2013). In

our fast-paced, information-rich environments, the cultivation of executive functions

is increasingly crucial for effective task performance and productivity. The ability to

manage attention, switch between tasks, and exercise inhibitory control is fundamen-

tal to successful human functioning in today’s complex and dynamic world (Miyake

et al., 2000; Friedman, 2015). Research findings consistently indicate that anxiety

impairs attentional control and cognitive performance, particularly under conditions

of high cognitive demand. Since attention control plays a vital role in cognitive func-

tions, it is often assessed using various tests. The Stroop test, Go/No-Go task, and

Anti-Saccade task are commonly used in research because they specifically target and

assess different aspects of attention. While all three tests are measures of executive

function, they differ in their specific cognitive demands and the underlying processes

they assess. The Stroop test measures attention control and the ability to inhibit au-

tomatic responses and maintain focus on the task at hand. The most common version

of this test involves colored words printed in different ink colors (e.g., the word “red”

printed in blue ink) and individuals are asked to name the ink color while ignoring

the word’s meaning. The interference caused by the conflicting information measures

the individual’s ability to focus attention and suppress automatic reading responses.

Stroop tasks assess selective attention and inhibition of irrelevant information (Meule,

2017). The Go/No-Go task assesses inhibitory control and working memory (Meule,

2017). Participants are required to respond to certain stimuli (go trials) but withhold

responses to others (no-go trials). This test measures the ability to inhibit prepotent

responses and maintain focused attention. It has been proven that acute psychoso-

cial stress may affect executive action control in a Go/No-Go task (Scholz et al.,

2009). The Go/No-Go test has been used in studies examining attentional control
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across different age groups, clinical populations, and in relation to various cognitive

functions (Pacheco-Unguetti, Acosta, Lupiáñez, Román, & Derakshan, 2012). The

Anti-Saccade task evaluates the ability to inhibit reflexive eye movements and vol-

untarily shift attention (Miyake et al., 2000; Hellmuth et al., 2012). Participants

are instructed to look away from a suddenly appearing visual stimulus. Successful

performance on this task requires inhibiting the automatic saccadic eye movement

towards the stimulus and voluntarily redirecting attention. Another widely used cog-

nitive task paradigm that measures cognitive control and attentional processes is the

flanker test. In this task, participants are presented with a central target stimulus,

such as an arrow, and are required to respond to its direction while ignoring distract-

ing stimuli, or "flankers", that are presented alongside the target. The flankers can

either be congruent (i.e. pointing in the same direction as the target) or incongruent

(i.e. pointing in the opposite direction). The main goal of the flanker test is to assess

the participant’s ability to inhibit attention to the distracting flankers and focus on

the relevant target stimulus. The test is often used in research to investigate the im-

pact of various interventions, such as mindfulness meditation training, on cognitive

performance and control (Lin et al., 2022). The ANT, or Attention Network Test, is

another cognitive task used to measure attentional control and executive function. It

consists of a series of visual stimuli, including arrows pointing in different directions,

and requires participants to respond to specific cues while inhibiting responses to

distracting information. The test assesses three main attentional networks: alerting,

orienting, and executive control. The alerting network is responsible for achieving

and maintaining a state of high sensitivity to incoming stimuli; the orienting net-

work is involved in the selection of information from sensory input; and the executive

control network is responsible for resolving conflicts in information processing. The

ANT is commonly used in research to investigate the effects of mindfulness-based

interventions and other cognitive training programs on attentional performance (Lin
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et al., 2022). These attention control tests provide insights into an individual’s cog-

nitive processes and contribute to understanding the intricate relationship between

executive functions, cognitive functions, and attention control as presented in Table

1.1. By assessing attentional abilities, these tests offer valuable information about an

individual’s capacity to manage and regulate their attention, which is essential for

successful functioning in various cognitive and behavioral contexts.

Cognitive Task Key Feature Common Use

Stroop Task Measures cognitive con-
trol and inhibitory control

Assessing attention, pro-
cessing speed, and inter-
ference control

Anti-Saccade Task Evaluates inhibitory con-
trol and voluntary eye
movement

Studying cognitive flexi-
bility, response inhibition,
and executive functions

Flanker Task Assesses selective atten-
tion, response inhibition,
and cognitive control

Examining interference
control, attentional focus,
and the ability to filter
out irrelevant information

Go/No-Go Task Evaluates response inhibi-
tion, impulsivity, and cog-
nitive flexibility

Investigating inhibitory
control, response accu-
racy, and decision-making
speed

Attention Network Test Measures alertness, spa-
tial orienting, and conflict
resolution abilities

Studying different com-
ponents of attention and
their interactions in cog-
nitive tasks

Table 1.1: Overview of attentional tests. Table compiled by Katarzyna Zemła based
on (Bari & Robbins, 2013; MacLeod, 1991; Munoz & Everling, 2004; Posner & Pe-
tersen, 1990)

1.6 The Effects of Anxiety and Stress on Cognitive

Function.

Anxiety’s influence on cognitive function has been extensively explored across multi-

ple studies and theoretical frameworks. One prominent framework is the processing

13



efficiency theory, which suggests that anxiety disproportionately affects processing

efficiency rather than performance effectiveness (Eysenck et al., 2007). This discrep-

ancy arises from the diminished engagement of the goal-directed attentional system

and heightened involvement of the stimulus-driven attentional system in anxious indi-

viduals. Consequently, individuals experiencing anxiety are more prone to distraction

by both internal and external stimuli, impairing their inhibition and shifting func-

tions. Moreover, as the demands of the central executive task escalate, the adverse

impacts of anxiety on performance intensify. This escalation makes it increasingly

challenging for anxious individuals to compensate for impaired efficiency through

heightened effort and resource utilization. Eysenck delineates the differentiation be-

tween effectiveness and efficiency in task execution, noting that efficiency diminishes

as additional resources are allocated to achieve a specific performance level.

Research has demonstrated that chronic stress induces dendritic atrophy in hip-

pocampal neurons, suppresses neurogenesis, and leads to hippocampal volume reduc-

tion (Lupien, McEwen, Gunnar, & Heim, 2009). These structural changes correlate

with deficits in spatial learning and memory, which exhibit potential for reversal fol-

lowing a period of stress alleviation (Lupien et al., 2009). In humans, chronic stress

is associated with diminished hippocampal volume and cognitive impairments, par-

ticularly among individuals with low self-esteem. The effects of chronic stress on the

brain and cognitive functions are intricate and contingent upon factors such as the

timing and duration of exposure, as well as individual susceptibility. Stress can exert

multifaceted effects on cognitive function, with the specific outcomes contingent upon

various factors related to both stress and the cognitive task at hand. The intensity

or magnitude, origin (task-induced or external), and duration (acute or chronic) of

stress all contribute to shaping its impact on cognition. Moreover, the nature of the

cognitive operation (e.g., implicit or explicit memory, long-term or working mem-

ory, goal-directed or habit learning) and the distinct phases of information processing
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(e.g., learning, consolidation, and retrieval) are crucial determinants of how stress

influences cognition (Sandi, 2013).

Chronic stress represents a considerable threat to human health and cognitive

function, manifesting in various challenging facets of life. It can precipitate the onset

of stress-related disorders like burnout, depression, and PTSD, while also exacer-

bating pre-existing vulnerabilities (Marin et al., 2011). Key factors such as gender,

early life experiences, and genetic predispositions substantially influence individuals’

perception and response to stress, thereby impacting stress reactivity, cognition, and

susceptibility to developing psychopathologies. Furthermore, prolonged stress can in-

fluence individuals’ cognitive evaluations and perceptions of situations, perpetuating

a cycle that proves difficult to escape from (Marin et al., 2011).

In conclusion, exploring techniques that release stress and induce relaxation can

offer valuable insights into the enhancement of cognitive abilities.

1.7 Exploring the Effects of Relaxation Practices on

Attention

The effects of meditation and relaxation techniques on attentional control have been

extensively studied (Chiesa & Serretti, 2010; Ruedy & Schweitzer, 2010; Tang, Hölzel,

& Posner, 2015; Zeidan, Gordon, Merchant, & Goolkasian, 2010). Meditation func-

tions by inducing a particular attentional state, which aids in regulating both physio-

logical and psychological processes. This refined attentional control enhances the ef-

fective allocation of attentional resources during initial processing stages, thereby en-

hancing subsequent cognitive processing (Malinowski, 2013; Zhou & Zafarani, 2020).

Meditation practices have been shown to selectively influence the resolution of cog-

nitive conflict between task-relevant and task-irrelevant stimuli, leading to enhanced

cognitive performance (Zhou & Zafarani, 2020). Additionally, the cultivation of a
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non-judgmental acceptance attitude through mindfulness-based practices can modify

the relationship between task-unrelated thoughts and task performance.

The Brief Mindfulness Meditation (BMM), based on classic mindfulness instruc-

tions used in the MBSR, composed of a 10-minute mindfulness exercise meticulously

recorded by a experienced mindfulness instructor. This guided exercise prompted

participants to conscientiously observe all facets of their present experience, encom-

passing thoughts and emotions, with an attitude of acceptance and curiosity. Partic-

ipants were instructed to release any emerging mental phenomena and gently refocus

their attention on the sensation of breathing in the present moment. The primary

objective of this exercise was to cultivate a decentered disposition towards the ex-

perience, enabling participants to engage with their thoughts and emotions through

the lens of mindfulness and acceptance. This led to a reduction in overall reaction

times compared to conditions involving worry and free mind-wandering (Jankowski &

Bąk, 2019). However, no discernible differences emerged among conditions in terms of

the switch cost. These findings suggest that mindfulness practices may alleviate the

allocation of attentional resources typically expended in suppressing task-irrelevant

thoughts associated with anxiety, thereby enhancing the general efficiency of cogni-

tive processes. Furthermore, brief mindfulness exercises may foster the adoption of

a decentered perspective toward stressful experiences, thereby mitigating cognitive

interference from intrusive processes (Jankowski & Bąk, 2019). The reciprocal rela-

tionship between attentional switching and mindfulness was also observed, indicating

that proficient attentional switching may facilitate the induction and sustenance of the

mindfulness state (Jankowski & Bąk, 2019). Brief mindfulness training can improve

overall reaction times in a switching attention task, particularly in stressful condi-

tions, by relieving working memory of its temporary load caused by irrelevant mental

processes such as worry (Jankowski & Bąk, 2019). This indicates a specific beneficial

effect of mindfulness practice on cognitive functioning, even in novice meditators.
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Meditators tend to exhibit improved performance on the Stroop task compared

to non-meditators, indicating both increased accuracy and quicker response times

compared with a meditation-naive control group (Malinowski, 2013). Mindfulness

interventions are found to enhance inhibition/executive control by promoting greater

cognitive flexibility, attentional control, and self-regulation. Through practices such

as focused attention and open monitoring, individuals learn to observe their thoughts

and emotions without reacting impulsively. This heightened awareness and self-

regulation contribute to improved inhibition and executive functioning (Verhaeghen,

2021). Scientific studies have revealed several key mechanisms through which medi-

tation enhances attention. Firstly, meditation practices, such as mindfulness medita-

tion, involve sustained attentional focus on a specific object or the present moment.

This training in sustained attention helps individuals develop better attentional con-

trol and the ability to maintain focus over time (Tang et al., 2007). Secondly, medita-

tion improves selective attention, allowing individuals to selectively focus on relevant

information while filtering out irrelevant stimuli (Jha et al., 2007). This enhanced

selective attention is attributed to the cultivation of mindfulness, which involves non-

judgmental awareness of present-moment experiences. Mindfulness meditation re-

duces attentional bias towards negative or distracting stimuli, enabling individuals to

redirect their attention more efficiently (Chambers, Lo, & Allen, 2008).

A comprehensive meta-analysis examining the impact of mindfulness meditation

training on cognitive function, particularly focusing on attentional tests such as the

Stroop and flanker tasks, revealed nuanced effects of mindfulness meditation training

on attentional test performance, contingent upon factors such as session duration and

training intensity. Specifically, Lin’s analysis (Lin et al., 2022) highlighted notable

findings regarding the efficacy of mindfulness meditation training. Direct compar-

isons between FA and open monitoring (OM) meditation indicated that both prac-

tices mitigated flanker interference on the Attention Network Task (ANT) following
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three training sessions. However, Lin also noted the existence of studies that did not

report significant improvements in attentional test performance following mindfulness

meditation training, underscoring the variability in outcomes across different inves-

tigations, which illustrates the complexity of the relationship between mindfulness

meditation and attentional performance.

The discourse underscores that prevalent clinical mindfulness interventions, such

as mindfulness-based stress reduction (MBSR) and mindfulness-based cognitive ther-

apy (MBCT), commonly amalgamate both FA and OM techniques, often introducing

FA practices preceding OM practices (Sumantry & Stewart, 2021). A meta-analysis

of studies on the effects of mindfulness and meditation on attention and related cog-

nitive variables found that interventions that included yoga practices led to lower and

non-significant effect sizes, suggesting that yoga may diminish the overall efficacy of

attention training in mindfulness programs (Sumantry & Stewart, 2021). Addition-

ally, the presence of a yoga component in some interventions, such as Mindfulness-

Based Stress Reduction (MBSR), demonstrates that MBSR interventions did not lead

to a significant effect on attention, possibly due to additional psycho-education com-

ponents and explicit advertising as "stress reduction", which may affect expectations

and attract a specific population with different needs (Verhaeghen, 2021). In Caseda’s

analysis (Cásedas, Pirruccio, Vadillo, & Lupiáñez, 2020), only a small-to-medium ef-

fect favoring mindfulness training over control interventions in improving executive

control was found. While individual effect sizes indicated positive impacts on working

memory and inhibitory control, no significant effect was seen on cognitive flexibility.

Furthermore, Caseda’s meta-analysis delves into the dichotomy between two styles of

mindfulness meditation practice: focused attention (FA) and open monitoring (OM)

(Cásedas et al., 2020). The research indicates that the FA meditation style correlates

with fewer errors in attention tests, while the OM meditation style generally results

in superior performance.
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1.8 Exploring the Effects of GI Practices on Atten-

tion

Conversely, there has been limited research examining the impact of Guided Im-

agery (GI) on attentional functions. Most research on Guided Imagery focuses on

its application in hospital settings, often involving recovery, rehabilitation, and pain

management. This emphasis is likely influenced by the historical context of Guided

Imagery, which was initially studied primarily in relation to oncology patients (Beizaee

et al., 2018; Carpenter, Hines, & Lan, 2017; dos Santos Felix, Ferreira, da Cruz, &

Barbosa, 2019; Simonton, Matthews-Simonton, & Sparks, 1980; Vagnoli, Bettini,

Amore, De Masi, & Messeri, 2019).

Within the literature, there exists research examining the combination of Guided

Imagery with other relaxation techniques. Meditation practices, including Guided

Imagery, have shown promise in enhancing cognitive functioning, executive function,

and working memory, as well as improving mental health conditions such as anxi-

ety and depression (Mitchell et al., 2021; Perich, Manicavasagar, Mitchell, & Ball,

2013; Shapiro, 2009; Williams et al., 2014; Vøllestad, Nielsen, & Nielsen, 2012). Re-

search by Hudetz demonstrated that relaxation induced by Guided Imagery resulted

in improved working memory performance and reduced state anxiety scores (Hudetz,

Hudetz, & Klayman, 2000). The study found that relaxation induced by Guided Im-

agery significantly increased post-test working memory performance in healthy vol-

unteers. The improvement in working memory scores was observed after a 16-minute

relaxation session, with a significant increase in working memory scores in the Relax-

ation group compared to the Control group. The working memory scores increased

by 30.2% after relaxation, while there was no significant change in the Control group.

The increase in working memory scores in the Relaxation group was consistent, with

an increase observed in 21 of 22 participants. The study also found a significant

19



reduction in state anxiety. The findings suggest that working memory performance

is enhanced by relaxation achieved through Guided Imagery.

1.9 Exploring the Effects of Relaxation Practices on

Alpha Oscillations

Meditation has been found to have a positive impact on attentional processes, influ-

encing various cognitive mechanisms and neural networks. It strengthens the neural

pathways involved in attention, including the prefrontal cortex and parietal cortex,

which play crucial roles in attentional processing (Lutz et al., 2008).

Scientific investigations have elucidated discernible variations in EEG (Electroen-

cephalographic) activity contingent upon the specific meditation practices employed.

The specific disparities in EEG activity between focused attention (FA) and open

monitoring (OM) meditation practices are intricately tied to the underlying patterns

of brain activity and cognitive processes characteristic of each modality of meditation.

Empirical investigations have consistently demonstrated that FA meditation is corre-

lated with elevated levels of alpha and theta power, alongside heightened alpha and

theta coherence (Fingelkurts, Fingelkurts, & Kallio-Tamminen, 2015). Conversely,

OM meditation has been associated with alterations in the mu rhythm of the hu-

man cortex, indicative of distinct cognitive states and neural processing mechanisms

(Fingelkurts et al., 2015). These discernible distinctions in EEG patterns serve as

tangible manifestations of the divergent neurophysiological effects elicited by FA and

OM meditation practices on both brain activity and cognitive function.

It’s important to clarify that the mu rhythm and the alpha rhythm are distinct

forms of brainwave activity, each with its own neural correlates and functional impli-

cations. The mu rhythm manifests specifically in the sensorimotor cortex, whereas

the alpha rhythm predominates in the occipital lobe (Fingelkurts et al., 2015). Both
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rhythms are intimately linked with diverse cognitive and physiological processes, un-

derscoring the nuanced complexity of neural dynamics and their functional signifi-

cance. Distinguishing EEG patterns between FA and OM meditation practices un-

derscores the unique cognitive processes engaged during each modality. FA medita-

tion initially directs the practitioner’s focus towards developing attentional stability,

clarity, and heightened awareness of their present mental state (Malinowski, 2013).

Conversely, OM practice fosters moment-by-moment attentiveness to all facets of ex-

perience. EEG investigations have elucidated that FA meditation elicits augmented

N2 and P3 components, indicative of intensified attentional resources and enhanced

perceptual discrimination and conflict resolution mechanisms (Malinowski, 2013). In

contrast, OM meditation is associated with heightened activity within regions impli-

cated in the salience network, such as the anterior insula and cingulate cortex, which

play crucial roles in emotion regulation. Consequently, EEG distinctions between FA

and OM practices reflect the distinct attentional and emotional processes inherent

to each form of meditation (Malinowski, 2013). These alterations signify heightened

attentional regulation and enhanced perceptual discrimination and conflict resolution

mechanisms, ultimately translating into enhanced performance on tasks such as the

Stroop task (Malinowski, 2013).

The transition from beta to alpha brainwaves during meditation has been asso-

ciated with higher-level cognitive processes (Hebert, Lehmann, Tan, Travis, & Are-

nander, 2005). Transcendental Meditation (TM) has exhibited a notable impact on

alpha phase synchrony within the brain, characterized by heightened synchronization

of alpha EEG activity, particularly evident between anterior and posterior regions.

This increase of alpha phase synchrony during TM practice has been correlated with

enhancements in cognitive performance and mind-body health. Furthermore, TM

practice has demonstrated the capacity to enhance the signal-to-noise ratio of al-

pha and gamma oscillations, resulting in diminished gamma firing and heightened
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alpha flow. Moreover, TM has been linked with a transition from ’object referral’ to

’self-referral’ among advanced practitioners, signifying a shift in cognitive processing

mechanisms (Hebert et al., 2005). These findings suggest that TM may facilitate the

restoration of disrupted neural integration mechanisms and invigorate cortical fields

in the brain, thereby fostering improvements in cognitive abilities.

Meditation has also been found to modulate the default mode network (DMN),

a brain network involved in mind-wandering and self-referential thinking. Mindful-

ness meditation decreases DMN activity and disrupts the default mode of thought,

reducing mind-wandering and enhancing present-moment attention (Hasenkamp &

Barsalou, 2012). This shift from self-focused thinking to present-moment awareness

contributes to improved attentional performance. Moreover, meditation practices

impact attentional networks, such as the alerting, orienting, and executive control

networks. These changes result in more efficient allocation of attentional resources

and better performance in attention-demanding tasks due to the engagement of differ-

ent brain regions and processes in FA and OM meditations. For instance, behavioral

studies have shown that OM meditators exhibit superior performance on sustained at-

tention tasks compared to FA meditators when the stimulus is unexpected, indicating

a more distributed attentional focus in OM meditators. Furthermore, neuroimaging

studies have demonstrated greater activity in neural circuitry associated with moni-

toring one’s body state during OM meditation, as well as the engagement of emotion

regulation processes located in the ventral prefrontal cortex (Lutz et al., 2008).

Most literature delves into the application of electroencephalography (EEG) as a

tool for elucidating the neural underpinnings of meditation practices. It accentuates

that engagement in meditation practices correlates with augmented power in theta

and alpha frequency bands (Cahn, Delorme, & Polich, 2013; A. W. Moore, Gruber,

Derose, & Malinowski, 2012).

Given the scarcity of literature exploring the influence of Guided Imagery (GI) on
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participants’ attention levels, this study aims to bridge this knowledge gap in the field.

There is great potential in utilizing this technique because, in contrast to meditation,

GI can be tailored to address specific mental and emotional states, such as stress

reduction, anxiety management, pain management, or improving performance. By

integrating imagery that aligns with desired outcomes, individuals can access and

cultivate the associated mental and emotional states more effectively. This level of

customization can make Guided Imagery a useful tool for individuals with diverse

needs and goals. However, despite the extensive use of Guided Imagery in various

therapeutic contexts, there is limited research on its effects on brainwave activity,

particularly compared to stress response regulation (Herman et al., 2003; McEwen &

Gianaros, 2011).

Tables 1.2 and 1.3 provide a comprehensive analysis of diverse meditation tech-

niques and their impact on attention control. Each meditation type is described,

detailing its specific focus, cognitive benefits, effects on attention, performance on

attentional tests, EEG findings, and practice methods. These insights illuminate

the cognitive mechanisms underlying diverse meditation practices, suggesting their

potential to enhance attentional abilities and cognitive performance.

Various meditation types are categorized in the table, including Mindfulness Med-

itation, Transcendental Meditation, Loving-Kindness Meditation, Yoga and Medita-

tion, Open Meditation, Focus Attention Meditation, Vipassana Meditation, MBSR

(Mindfulness-Based Stress Reduction), and Guided Imagery (GI). Each type is delin-

eated based on its unique features and practices, such as promoting present-moment

awareness, utilizing mantras, fostering compassion, combining physical postures with

breathwork, encouraging broad awareness, and concentrating on specific objects.

The table reveals how each meditation type impacts attention control by improv-

ing focus, reducing distractions, and enhancing cognitive performance. Furthermore,

the table evaluates the effectiveness of different meditation types on various atten-
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Meditation

Type

Attentional

Tests results

EEG Changes FA or OM

Open Meditation Improved perfor-
mance on Stroop
Task and Flanker
Task by reducing
errors

Leads to changes
in theta and delta
brainwave activity
associated with
deep relaxation
and heightened
focus

OM

Focus Attention
Meditation

Enhanced per-
formance on
Go/No-Go Task
and Stroop Task
by decreasing
errors

Increases beta
brainwave activity
linked to alertness
and concentration,
improving atten-
tion control

FA

Mindfulness Medi-
tation

Improved perfor-
mance on Stroop
Task and Anti-
Saccade Task by
reducing errors

Increases alpha
and theta brain-
wave activity
associated with
relaxation and
focus

FA

Transcendental
Meditation

Enhanced perfor-
mance on Flanker
Task and Go/No-
Go Task by de-
creasing errors

Produces coher-
ent alpha and
gamma brainwave
patterns linked
to heightened
awareness and
concentration

OM

Loving-Kindness
Meditation

Improved per-
formance on
Attention Network
Test by enhanc-
ing accuracy and
speed

Increases gamma
brainwave activity
associated with
positive emotions
and heightened
awareness

FA

Table 1.2: Overview of Relaxation Techniques and Their Effects on Cognitive Neuro-
science. Compiled by Katarzyna Zemła based on scholarly references (Cahn & Polich,
2006; Lutz et al., 2008; Jha et al., 2007; Mellenthin, 2021; Travis & Shear, 2010; Zei-
dan, Johnson, et al., 2010; Zemla, Sedek, et al., 2023)
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Meditation

Type

Attentional

Tests results

EEG Changes FA or OM

Yoga and Medita-
tion

Enhanced per-
formance on
Go/No-Go Task
and Flanker Task
by improving effi-
cacy

Alters brainwave
patterns towards a
more relaxed and
focused state, pro-
moting attention
and awareness

FA

Vipassana Medita-
tion

Improved per-
formance on
Anti-Saccade Task
and Attention
Network Test by
enhancing accu-
racy and speed

Increases theta
and gamma brain-
wave activity
associated with
deep insight and
heightened aware-
ness

FA

MBSR
(Mindfulness-
Based Stress
Reduction)

Enhanced per-
formance on
Go/No-Go Task
and Attention
Network Test by
improving efficacy

Modulates alpha,
theta, and gamma
brainwave activity
associated with
relaxation, focus,
and emotional
regulation

FA

Guided Imagery Enhanced perfor-
mance on Stroop
Task and Anti-
Saccade Task by
improving efficacy

Induces changes
in alpha brain-
wave patterns
associated with
relaxation and
heightened focus

FA & OM

Table 1.3: Overview of Relaxation Techniques and Their Effects on Cognitive Neuro-
science. Compiled by Katarzyna Zemła based on scholarly references (Cahn & Polich,
2006; Lutz et al., 2008; Jha et al., 2007; Mellenthin, 2021; Travis & Shear, 2010; Zei-
dan, Johnson, et al., 2010; Zemla, Sedek, et al., 2023)
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tional tests, such as the Stroop Task, Anti-Saccade Task, Flanker Task, Go/No-Go

Task, and Attention Network Test. It demonstrates how each practice influences per-

formance on these tests by enhancing accuracy, reducing errors, and improving overall

cognitive function. Moreover, the table presents EEG results and changes associated

with each meditation type, revealing brainwave activity patterns linked to relaxation,

focus, heightened awareness, and emotional regulation. These findings offer insights

into the neural mechanisms underlying the effects of meditation on attention control

and cognitive performance. Additionally, the table specifies whether each meditation

type involves focused attention (FA) or open monitoring (OM) practices, highlighting

the cognitive processes engaged in each practice. Understanding the form of medi-

tation practice provides insights into how different cognitive functions are cultivated

and enhanced through mindfulness practices.

By exploring the unique characteristics and outcomes of each practice, the table

succinctly summarizes their impact on the specified areas of interest, providing clear

insights into cognitive neuroscience and mental well-being.

Based on the parallels drawn with focused attention (FA) and open monitoring

(OM) practices in the table, the implications for GI are significant, particularly in

terms of its potential impact on attention control, cognitive performance, and brain-

wave activity. GI shares similarities with FA practices in its capacity to enhance

attentional control by directing focus towards specific mental images or scenarios.

Similarly, akin to OM practices, Guided Imagery may lead to improvements in cogni-

tive performance by fostering relaxation, reducing stress, and promoting attentional

control. Moreover, Guided Imagery may induce changes in brainwave activity pat-

terns associated with relaxation and heightened awareness, resembling effects ob-

served in both FA and OM practices. Additionally, GI may offer therapeutic benefits

for stress reduction, anxiety management, and cognitive enhancement, aligning with

the holistic mind-body approach embraced by FA and OM practices. Overall, these
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findings underscore the potential of GI as a valuable tool for enhancing attention

control, cognitive performance, and emotional regulation.

1.10 Potential benefits of Guided Imagery in Virtual

Environments for Relaxation and Well-Being

The recent technological revolution has implemented new tools that provide computer-

generated audio-visual displays and produce immersion in digital 3D environments.

Literature in this field is growing. In "Virtual Reality–Guided Meditation for Chronic

Pain in Patients With Cancer" (Fu et al., 2021), researchers verified whether a VR-

guided meditation experience in patients with cancer-related pain would produce sig-

nificant changes in EEG waveforms and affect the pain experienced during VR-guided

meditation. The results of this study demonstrated the feasibility of EEG recording

and subsequent data processing and analysis during VR experiences in patients using

modern VR HMDs.

Eduardo Perez-Valero (Perez-Valero, Vaquero-Blasco, Lopez-Gordo, & Morillas,

2021) obtained results through EEG on twenty-three volunteers. Participants were

subjected to stressful interactions alternating with relaxation phases. After quan-

titatively assessing the stress level through individualized regression algorithms, re-

searchers developed stress classifiers that indicate regression models can quantita-

tively predict stress levels with noteworthy performance. Stress response regula-

tion (Herman et al., 2003; McEwen & Gianaros, 2011; Gianaros, Onyewuenyi, Sheu,

Christie, & Critchley, 2012) changes EEG brainwave activity. Specifically, alpha

power (8–13 Hz) is thought to decrease due to its association with relaxation and in-

verse relation to cognitive activity (Klimesch, Doppelmayr, Schimke, & Pachinger,

1996), while beta power (13–30 Hz) is thought to increase in response to stress

(Trakhtenberg, 2008) due to its association with information processing and anxi-
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ety (Stern, Gonzalez, Welsh, & Taylor, 2010).

Given the expansion of mental health problems and the significant increase in

stress disorders caused by recent pandemics and wars, it is highly necessary to create

solutions readily available to manage stress levels and support personal well-being.

Rapid technological evolution, emerging datasets, and virtual reality offer the po-

tential to build models and solutions that could support individuals in maintaining

mental resilience while promoting cognitive functions.

According to attentional control theory (Eysenck et al., 2007), anxiety and worry-

ing deplete attentional resources and reduce efficiency in cognitive tasks demanding

effort, such as a switching task. While relaxation techniques offer wide-ranging phys-

iological and psychological benefits, there is only a seminal work by Hudetz (Hudetz,

Hudetz, & Reddy, 2004) that empirically demonstrated a significant augmentation of

post-test working memory performance among healthy volunteers after a 16-minute

Guided Imagery session. This improvement was associated with a marked reduction

in state anxiety and changes in EEG activity. Despite the extensive body of research

underscoring the beneficial effects of this methodology as a therapeutic intervention

for life-threatening diseases (Simonton et al., 1980; Pelletier, 1977), Hudetz’s findings

stand alone in elucidating the correlation between Guided Imagery and brainwave

activity (Hudetz et al., 2000). The notable lack of quantitative models illustrating

the influence of Guided Imagery on brainwave activity is a gap in the current litera-

ture that this research aims to address. A recent manuscript on Convolutional Neural

Networks (CNNs), derived from our research on Guided Imagery (GI) and currently

under review for publication in Springer Nature Scientific Reports (Postepski et al.,

2023), represents a significant advancement in the application of technology to sup-

port mental well-being. This research extends prior work on Guided Imagery (GI) by

illustrating the efficacy of CNNs in discerning between mental workload and guided

imagery states based on brain activity. The study highlights the substantial benefits
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of employing CNNs for the precise classification of these distinct cognitive states.

Applications of CNNs in EEG analysis include seizure detection, brain-computer

interface (BCI) systems, sleep stage classification, emotion recognition, and cognitive

workload assessment. Overall, CNNs enhance the capability to analyze complex EEG

data, leading to more accurate and reliable results. Convolutional Neural Networks

(CNNs) offer significant added value over typical machine learning classifiers, partic-

ularly in tasks involving image and spatial data which have several implications for

the development of brain-computer interfaces (BCIs). Unlike traditional classifiers,

which require manual feature extraction, CNNs automatically learn hierarchical fea-

ture representations directly from the raw input data. This capability is enabled by

convolutional layers that apply filters to detect local patterns such as edges, textures,

and shapes, which are then combined in deeper layers to recognize more complex

structures. This leads to superior performance in tasks like image recognition, ob-

ject detection, and image segmentation. Moreover, CNNs leverage parameter sharing

and local connectivity, which reduces the number of parameters and computational

complexity compared to fully connected networks. This efficiency, combined with

their ability to generalize well across varied datasets, makes CNNs particularly pow-

erful for handling large-scale, high-dimensional data, thereby enhancing accuracy and

robustness in practical applications.

Convolutional Neural Networks (CNNs) are highly applicable to EEG (electroen-

cephalogram) signal analysis. EEG signals, which are time-series data capturing elec-

trical activity of the brain, can benefit from CNNs’ ability to automatically extract

and hierarchically learn relevant features. Here are some specific advantages:

• Spatial Feature Extraction: CNNs can capture spatial dependencies and pat-

terns within EEG data, such as the relationships between different electrode

signals. This is especially useful when EEG data is represented as 2D spatial

maps (topographical maps), where CNNs can analyze the spatial distribution
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of brain activity.

• Temporal Feature Extraction: By applying convolutions over the time dimen-

sion, CNNs can effectively detect temporal patterns and trends within the EEG

signals. This is crucial for tasks like detecting event-related potentials or dis-

tinguishing between different brain states.

• Noise Robustness: EEG signals are often noisy and subject to artifacts. CNNs

can learn to focus on relevant features while ignoring noise, improving the ro-

bustness of the analysis.

• End-to-End Learning: CNNs enable end-to-end learning, where the model can

be trained directly on raw or minimally processed EEG data. This reduces the

need for extensive manual feature engineering, which is typically required in

traditional machine learning approaches.

• Transfer Learning: Pre-trained CNNs on similar tasks can be fine-tuned for spe-

cific EEG analysis tasks, leveraging prior knowledge and improving performance

even with limited data.

Through rigorous experimentation and comprehensive analysis, the research achieved

an impressive classification accuracy of approximately 0.8, leveraging 20 sets of the

most informative EEG signals for each state. This outcome underscores the strong

capability of CNNs to capture and distinguish complex neural patterns associated

with different cognitive states. By exploiting CNNs’ abilities for automatic feature

extraction and hierarchical learning, this research not only demonstrates a novel ap-

plication of deep learning but also offers a promising methodology for enhancing the

precision of cognitive state assessment. This advancement holds significant implica-

tions for the development of GI therapies and the improvement of brain-computer

interface technologies.
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The signals collected in our experiments illustrate that classification is achievable

using both Generalized Linear Models (GLMs) and Convolutional Neural Networks

(CNNs). This dual capability indicates the presence of distinct features and biomark-

ers within each signal, which can be precisely identified and attributed to specific

classes of cortical brain activity. Although these features may be imperceptible to

human observation, advanced data science methods can effectively discern them. The

capacity of CNNs to detect such subtle and complex patterns underscores their po-

tential to uncover intricate neural markers that distinguish different cognitive states,

thereby enhancing the precision and reliability of brain activity classification.

Looking ahead, we envision that integrating VR technology with GLMs could en-

able patients to create vivid, positive experiences, thereby facilitating relaxation and

promoting positive beliefs and attitudes toward their healing and treatment processes,

or enhancing their overall well-being. This approach holds particular promise for in-

dividuals who lack easy access to specialized psychological support due to constraints

such as time, financial resources, or geographical location.
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Chapter 2

Research description and hypothesis

2.1 Research hypothesis

Based on the literature review, mostly related to meditation practices and their ben-

eficial impact on human well-being, it was hypothesized that Guided Imagery (GI),

a technique involving the creation of detailed mental images to induce relaxation

and focus, holds promise for reducing stress levels and improving cognitive abilities.

Drawing parallels with focused attention (FA) and open monitoring (OM) practices,

Guided Imagery (GI) shares similarities in promoting relaxation, reducing distrac-

tions, and enhancing attention control. Given the documented efficacy of FA and

OM practices in stress reduction and cognitive enhancement, Guided Imagery is hy-

pothesized to similarly decrease stress levels and enhance cognitive abilities.

Alpha brainwaves, indicative of a relaxed and alert mental state, are expected

to be influenced by GI due to its relaxation-inducing effects. Enhanced alpha wave

activity, associated with improved cognitive functions such as attention, memory,

and problem-solving skills, may mediate the association between the employment of

Guided Imagery (GI) and the reduction in errors on attention tests resulting from

Guided Imagery (GI) practices. Consequently, it was hypothesized that individuals
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after Guided Imagery (GI) intervention may experience heightened cognitive abilities

and mental clarity through increased alpha brainwave activity.

Moreover, it is hypothesized that a brief session of Guided Imagery (GI) has the

potential to reduce the number of errors in attentional tests, including the Stroop,

Go/No-Go, and Anti-Saccade tests. This hypothesis is supported by evidence sug-

gesting that GI enhances attentional control, cognitive performance, emotional reg-

ulation, and brainwave activity. Thus, the study aims to empirically investigate the

effectiveness of Guided Imagery in improving attentional performance and inducing

a relaxation state. Drawing from the literature on mindfulness and the core cog-

nitive abilities of inhibition, shifting, and updating, which are cultivated through

regular meditation practice, play a crucial role in supporting a mindful state (Holas

& Jankowski, 2013). Studies have reported a relationship between mindfulness and

performance on Go/No-Go tasks, with higher self-reported mindfulness scores asso-

ciated with more accurate responses (Brown & Ryan, 2003; Feldman, Hayes, Ku-

mar, Greeson, & Laurenceau, 2007; Keith, Blackwood, Mathew, & Lecci, 2017; Mali-

nowski, 2013; A. Moore & Malinowski, 2009; Mrazek, Mooneyham, & Schooler, 2014;

Schmertz, 2006).

Therefore, it is expected that the underlying mechanisms by which GI may en-

hance attentional processes can be attributed to several factors. Firstly, the relaxation

and stress reduction induced by GI may contribute to improved attentional control,

as stress and anxiety can negatively impact attention and cognitive performance.

By inducing a relaxation state, Guided Imagery (GI) may alleviate distractions and

promote a state of focused attention. Secondly, the visualization and mental im-

agery involved in Guided Imagery (GI) exercises can enhance cognitive flexibility and

cognitive resource allocation. Engaging in vivid sensory experiences during Guided

Imagery (GI) may train the brain to better allocate attentional resources, filter out

irrelevant information, and maintain cognitive flexibility, which are crucial compo-
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nents of attentional control. Additionally, in light of the studies conducted by Kane

and Engle (Kane & Engle, 2003), which highlight the role of "goal neglect" in error

generation during the Stroop test, it is crucial to explore why changes are expected

only in the number of errors and not in reaction times. Kane and Engle’s findings

suggest that individuals with higher working memory (WM) capacity exhibit fewer

errors in the Stroop task compared to those with lower WM capacity (Kane & En-

gle, 2003). This relationship may extend to the Anti-Saccade task, where effective

goal maintenance and resolution of competition from habitual responses are critical

determinants of performance (Kane, Bleckley, Conway, & Engle, 2001). The ability

to maintain task goals amidst competing responses is a key factor in reducing er-

rors, an aspect that Guided Imagery might enhance through improved relaxation and

attentional control.

The novelty of this research lies in its ability to showcase the potential of EEG

signal classification with a Generalized Linear Model (GLM) for distinguishing be-

tween two distinct mental states, which could pave the way for developing innovative

brain-computer interfaces tailored for therapeutic applications in the future.

Generalized Linear Models (GLMs) are highly versatile tools in machine learning

and statistical modeling. They excel in handling various data types and distribu-

tions, making them adaptable to diverse classification tasks (Song, Langfelder, &

Horvath, 2013). With GLMs, researchers gain interpretable insights into predictor-

response relationships through easily interpretable coefficients. These models are

computationally efficient, making them suitable for real-time applications. GLMs

can be regularized to prevent overfitting and enhance generalization, while their fea-

ture selection abilities streamline model complexity and improve prediction accuracy

(Dobson & Barnett, 2018). Additionally, GLMs provide probabilistic predictions and

are robust to outliers and noise. They scale well to complex tasks and are relatively

easy to implement and interpret, catering to users of all skill levels. Overall, the
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flexibility, interpretability, efficiency, and regularization capabilities of GLMs make

them indispensable in classification tasks across various domains.

2.2 Research description

Initially, 60 participants were enlisted from the Computer Science student body at

Maria Curie-Sklodowska University in Lublin. All participants were right-handed

males aged between 17 and 24, with an average age of 20.38 and a standard deviation

of 1.52. The decision to exclusively recruit male participants was based on the predom-

inant male attendance in the Computer Science program at the university where the

study was conducted, as well as reported disparities in electroencephalogram patterns

between males and females. This approach aimed to achieve a relatively homogeneous

response within the cohort. Participants were screened to ensure they did not have

any chronic illnesses. They were required to disclose any significant health conditions

such as chronic fatigue syndrome, cancer, or other long-term ailments, including men-

tal disorders. Individuals with such conditions were automatically excluded from the

participant pool being assembled.

The eligibility criteria for participants in this experiment specify individuals who

are male, Polish-speaking, right-handed, healthy, and have short hair, aged between

17 and 24 years. They must have no record of chronic illnesses, not be currently using

prescribed medication, soft drugs, or hard drugs, and should be able to attend study

sessions without any technological needs. Participants were additionally requested to

abstain from consuming alcohol or any medications for at least 72 hours prior to their

involvement in the experiment.

The exclusion criteria encompass individuals who are below 17 or above 24 years

of age, left-handed, possess long hair, do not speak Polish fluently, are suffering from

serious or chronic illnesses, currently using prescribed medication, soft drugs, or hard
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drugs, have undergone medical treatment within one year preceding the study, or are

unable to attend study sessions. Participants failing to meet the inclusion criteria

or disclosing any significant illnesses, including mental disorders, were automatically

excluded from the participant pool. Before engaging in the experiment, participants

were briefed on EEG research and technology and provided consent to participate by

signing an agreement.

The proportion of females engaging in computer science education remains limited,

presenting challenges in forming a diverse participant pool for the experiment. We aim

to ensure equal representation of left-handed and right-handed individuals, regardless

of gender. Furthermore, it was noted that a considerable majority of female computer

science students had lengthy hair. Notably, research has highlighted differences in

electroencephalogram patterns between genders (Hanlon, Thatcher, & Cline, 1999;

Jaušovec & Jaušovec, 2010), prompting our efforts to elicit a balanced response from

the cohort.

The Fig. 2.1 presents structured sequence of steps, ensuring a systematic ap-

proach to data collection and analysis. Prior to the experiment, the study participants

were required to provide informed consent, indicating their willingness to participate.

The participants also completed various questionnaires, including the Scales of Help-

lessness and Anxiety of Contracting an Infectious Disease by Rydzewska and Sedek

(Rydzewska, Pawłowska, Nielek, Wierzbicki, & Sedek, 2021), which were based on

previous research on uncontrollability and adapted to the context of the COVID-19

pandemic. These measures aimed to assess the potential role of maladaptive emotions

in impeding rational decision-making during the pandemic. The experimental cohort

was then randomly divided into two sub-cohorts: Sub-cohort A, which consisted of

30 subjects exposed to relaxation GI technique, and Sub-cohort B, which consisted of

30 subjects assigned to perform the mental task. The EEG Lab, situated within the

Department of Neuroinformatics and Biomedical Engineering, is outfitted with ad-
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Figure 2.1: Experimental procedure schema
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vanced equipment including a high-density array amplifier capable of recording brain

electrical signals at a rate of 500 Hz, employing a 256-channel HydroCel GSN 130

Geodesic Sensor Net. This integrated system, crafted by Electrical Geodesic Systems,

employs the Geodesic Photogrammetry System (GPS), which employs 11 cameras po-

sitioned in its corners to generate a precise model of the subject’s brain based on its

dimensions and shape. This setup enables accurate overlaying of computed brain

activity onto the brain model. The amplifier operates in tandem with Net Station

4.5.4 software, while the GPS is managed by Net Local 1.00.00 and GeoSource 2.0.

Eye tracking is facilitated by the SmartEye 5.9.7 system, enabling gaze calibration

and removal of eye blinks and rapid eye movements. PST e-Prime 2.0.8.90 is utilized

for designing the ERP experiments.

The Bioethical Committee of Maria Curie-Sklodowska University in Lublin, Poland,

provided approval for all the experiments detailed below.

After undergoing pre-processing and eliminating data with poor quality, only par-

ticipants who provided complete and good EEG quality recordings while meeting all

exclusion criteria were included in the final analysis (Fig. 2.2. This resulted in a

GI sub-cohort of 20 subjects and a mental task-engaged sub-cohort of 28 subjects.

Participants were provided with information about EEG research and technology,

and they signed an agreement for participation, as well as a declaration to ensure

they fulfilled the inclusion and exclusion criteria. Additionally participants were also

required to fill in their personal information and answer several questionnaires as

outlined below: 1. The Scales of Helplessness and Anxiety of Contracting an Infec-

tious Disease were developed by Rydzewska, K., and Sedek, G. (Rydzewska et al.,

2021) as part of research materials from the SWPS University 2021. The Scale of

Helplessness of Contracting an Infectious Disease is an adaptation of the Intellectual

Helplessness Scale, which was originally designed to assess feelings of uncontrollabil-

ity in educational settings. This earlier scale focuses on scenarios where individuals
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Figure 2.2: Data analysis pipeline (Zemla, Wojcik, et al., 2023)
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persist in attempting to solve tasks they do not comprehend, leading to a sense of

intellectual helplessness within that domain. In response to the COVID-19 pandemic,

the researchers modified this scale to address the specific context of infectious dis-

eases, particularly the pervasive feelings of helplessness and anxiety triggered by the

pandemic’s uncontrollable nature. The adaptation aimed to capture the emotional

responses individuals might experience in the face of a rapidly evolving and uncertain

health crisis. This adaptation is grounded in the analysis of the pandemic’s initial

exponential growth phase, as documented by Koczkodaj (Koczkodaj et al., 2020).

These measures are instrumental in highlighting the potential impact of elevated

maladaptive emotions on rational decision-making during the pandemic. The Scale

of Helplessness includes items such as "I feel helpless in the face of the possibility of

contracting an infectious disease," while the Scale of Anxiety features items like "I am

concerned when someone around me sneezes without covering their mouth." . Each

scale consisted of ten items rated on a 5-point Likert scale, ranging from 1 (never) to

5 (always). These measures were used to indicate the potential role of high levels of

maladaptive emotions in impeding rational decision-making during the pandemic.

2. The State-Trait Anxiety Inventory (STAI) is a self-report questionnaire de-

signed to measure anxiety in adults. The STAI questionnaire consists of two separate

scales: the State Anxiety Scale and the Trait Anxiety Scale. The State Anxiety Scale

measures the level of anxiety that a person is experiencing in the present moment,

and is therefore designed to assess the intensity of a person’s emotional response to a

specific situation (Spielberger, 1983). The scale contains 20 items that describe vari-

ous emotional and physical symptoms of anxiety, such as ”I feel nervous” and ”I feel

shaky.” Respondents rate each item on a four-point scale, from ”not at all” to ”very

much so.” The Trait Anxiety Scale, on the other hand, measures a person’s general

level of anxiety across situations and over time. This scale contains 20 items that

describe how respondent feels in general, such as ”I worry too much over something
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that really doesn’t matter” and ”I feel calm.” Again, respondents rate each item on a

four-point scale. The STAI questionnaire is often used in medical and research set-

tings to help identify people who may need treatment for anxiety (Spielberger, 1983).

It can also help to measure the effectiveness of treatments designed to reduce anxiety.

3. Following both the GI and mental task sessions, participants underwent at-

tentional tests to test the hypothesis that GI can enhance attentional control. Anti-

Saccade tasks require participants to inhibit a reflexive saccade towards a visual target

and instead make a deliberate saccade to a location opposite to the target. This task

measures the ability to inhibit automatic responses and requires attentional control

(Course-Choi, Saville, & Derakshan, 2017). The Anti-Saccade test attention con-

trol was designed according to the recommendations of the Antoniades protocol. In

prosaccade trials, the object appears at the location of the cue, so the discrimination

of stimuli is relatively easy. In Anti-Saccade trials however the identification of the

object is more difficult, because it appears on the opposite side of the cue. The tasks

were presented in a pseudorandom order, with control over the side of object presen-

tation (left or right). After each trial, feedback on task accuracy was displayed on the

screen. The main test consists of 4 blocks of tasks: Blocks 1 and 4: 12 prosaccadic

tasks each Blocks 2 and 3: 24 antisaccadic tasks and 24 antisaccadic tasks with a

mask Each block was followed by a 30-second break. The primary indicator in this

task is the average percentage of correct responses for the antisaccadic blocks.

The numerical Stroop Test which is a variation of the classic Stroop test that

uses numbers instead of words. The test is designed to create interference between

the automatic response of reading the digits and the task of counting them, which

requires more cognitive effort. In the study participants needed to count the number

of digits on the screen and indicate the answer by pressing the appropriate numeric

key. In congruent trials, the number of digits reflects their value: for example, three

digits of value 3 so providing a correct answer 3 is cognitively facilitated. In conflict-
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triggering trials, the number of digits does not match their value: for example, three

digits of value 2. To provide a correct answer, the participant should ignore the value

of digit 2 and intentionally count their number. The test consists of 40 trials divided

into 4 blocks:

• 5 congruent trials,

• 15 incongruent trials,

• 15 mixed trials (10 congruent and 5 incongruent in pseudo-random order),

• 5 congruent trials.

The main indicator in this test was the average percentage of correct answers. The

test measures the ability to suppress automatic responses (response inhibition) and

focus attention on the task at hand (Huang et al., 2019).

Go/No-Go tasks require participants to respond to one type of stimulus (the ”go”

stimulus) but inhibit their response to another type of stimulus (the ”no-go” stimulus).

This task assesses the ability to inhibit automatic responses and cognitive flexibility,

as well as response inhibition and working memory (Meule, 2017). The tasks in the

main block were arranged in a pseudo-randomized order while following the rule that

No-go trials were preceded by 2 or 5 Go trials. The task requires pressing the down

arrow key whenever a regular fish appears (Go trials) and refraining from pressing

the down arrow key when a shark appears (No-go trials). The program waits for a

response for up to 1.5 seconds. The interval between successive stimuli is set to one

second. There are 150 trials in total, with a proportion of 80% Go trials and 20%

No-go trials.

As a primary measure of Go/No-Go task performance on attention control was

the percentage of correct responses for Go trials after No-go trials.

4. Furthermore, both prior to and following the GI and mental task sessions,

the study participants were administered questionnaires developed by the research
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team. These questionnaires encompassed various measures, including participants’

self-reported levels of stress and relaxation on a 10-point scale and enabled the iden-

tification of emotions experienced by the participants before and after the GI and

mental tasks experienced intervention.

To induce a state of relaxation, participants were seated in a comfortable armchair

with earphones and listened to a 21-minute Guided Imagery (GI) recording prepared

by a trained expert. The GI technique involves focusing on a positive mental image

of a peaceful beach where they could feel safe and could relax their mind and body.

They were asked to imagine themselves comfortably lying down on the warm sand,

hear the waves that are hitting the sand and to experience the comforting warmth

of the sun’s rays on their face and the wind tenderly wrapping around their body.

During the mental task, participants were asked to recall information, such as the

capitals of European countries, zodiac signs, and the states of the United States of

America. They were informed that their performance would be evaluated, and their

reward would depend on the results. This task was chosen as it requires mental effort,

leading to a high level of mental workload to simulate the everyday mental state. Both

the Guided Imagery group and the mental task group underwent the same conditions

in the experiment. This included listening to pre-recorded instructions for an equal

duration. Additionally, two trained technicians supervised each experimental session,

paying careful attention to technical aspects such as electrode placement, ensuring

proper functioning, and managing the playback of the recordings.
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Chapter 3

Research results and discussion

This study has several notable findings that contribute to the novelty of the research.

Firstly, the analysis of brainwave data during Guided Imagery (GI) sessions revealed

an increase in alpha power (Fig. 3.1), indicating a state of deep relaxation (Hebert

et al., 2005).

Figure 3.1: The 14th minute choice justification (Zemla, Sedek, et al., 2023)

An increase in alpha power in the brain is associated with a state of deep re-

laxation and reflects the current state of the art regarding the impact of relaxation
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techniques on brainwave activity. For instance this was evidenced in a study by

Davidson (Davidson et al., 2003), which observed significant improvements in brain

function and immunity among participants who underwent Mindfulness-Based Stress

Reduction (MBSR) training. As well as during practices like Transcendental Medi-

tation (TM), there is a notable increase in alpha power, indicative of restful alertness

devoid of cognitive effort. This rise in alpha power during meditation suggests a state

of profound relaxation and enhanced awareness, supporting the conventional notion

of alpha activity as a marker of relaxation and the brain’s idling state (Hebert et al.,

2005). The results obtained are consistent with the existing scientific literature in this

field and support the proposed hypothesis that Guided Imagery (GI) can induce relax-

ation and foster a relaxed mental state. In addition, alpha waves are associated with

a state of relaxed alertness, which is conducive to improved cognitive functioning and

attentional control (Praissman, 2008). Additionally, the study observed no significant

differences in beta power between the GI group and the mental task group, suggest-

ing that the relaxation induced by GI did not interfere with participants’ ability to

maintain attention and focus (Palacios-García et al., 2021).

The classification analysis using a general linear model (GLM) demonstrated high

accuracy in distinguishing between the brain states of deep GI relaxation and en-

gaging in a mental task (Fig. 3.1). The classifier’s performance improved as the

length of the signal input increased, indicating the effectiveness of using longer signal

intervals for classification purposes. This finding highlights the potential of machine

learning techniques, such as GLM classifiers, in accurately classifying brain states

based on EEG data. The findings support the potential application of GI as an ef-

fective intervention for stress reduction and relaxation. Moreover, the study opens

up possibilities for the development of brain-computer interfaces (BCIs) that utilize

EEG recordings and machine learning classifiers to support therapy sessions and en-

hance the effectiveness of relaxation interventions. Brain-computer interfaces (BCIs)
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present a compelling option for a range of applications, due to their non-invasive

nature, user-friendly design, and relatively low cost (Jiang, Lopez, Stieger, Greco, &

He, 2021).

The results presented in Tables (Tab. 3.1 & Tab. 3.2) illustrate various psycho-

logical and neurophysiological measures comparing the Guided Imagery (GI) group

and the Mental Task (MT) group. The analysis of these results in light of existing

literature provides insights into the efficacy of guided imagery on emotional states

and cognitive performance.

Table 3.1: Participants’ Characteristics for Subjective Measures (Zemla, Sedek, et
al., 2023)

The Tab. 3.1 shows the participants’ characteristics for subjective measures in

a study with two groups: Guided Imagery (GI) Group (N=20) and Mental Task

(MT) Group (N=28). The measures include anxiety, helplessness, stress reduction,

and relaxation increase. One-way analysis of variance (ANOVA) was conducted to

test for notable differences between the groups. The significant reduction in stress

observed in the Guided Imagery (GI) Group, compared to the Mental Task (MT)

Group, underscores the efficacy of Guided Imagery (GI) as a stress management tool.

This finding aligns with existing literature, which posits that Guided Imagery (GI)

can induce relaxation by promoting positive mental imagery and reducing negative
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thoughts (Mellenthin, 2021). There are no significant differences between the Guided

Imagery (GI) and Mental Task (MT) groups in terms of trait anxiety (STAI Trait)

and state anxiety (STAI State) pre-test scores, indicating that the participants started

with similar levels of anxiety. This is reflected in the non-significant p-values and F

statistics. This outcome is consistent with research showing that pre-intervention

measures are often similar across randomized groups, ensuring any post-intervention

differences can be attributed to the intervention itself (Spielberger, Sydeman, Owen,

& Marsh, 1999). There is a significant difference in stress reduction (F = 5.12, p

= 0.03) with the Guided Imagery (GI) group showing greater reduction in stress

compared to the MT group. This aligns with the findings that guided imagery is

effective in reducing stress through relaxation and visualization techniques (Davidson

et al., 2003). While there is an observed increase in relaxation in the Guided Imagery

(GI) group, the difference is not statistically significant (p = 0.14). However, the

trend supports the notion that Guided Imagery (GI) can enhance relaxation, which

has been documented in previous studies (Jain et al., 2007).

Table 3.2: Participants’ Characteristics for Brain Waves and Attentional Control
Measures (Zemla, Sedek, et al., 2023)

The increase in alpha power (Tab. 3.2) at the 14th minute in the GI group (p =

0.023) suggests a state of deep relaxation and reduced cognitive activity, consistent

with findings associating increased alpha activity with meditative states (Klimesch,
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1999). This increase in alpha power aligns with current research and is correlated with

the GI group’s significantly fewer errors in the Stroop task (F = 8.06, p = 0.007),

indicating improved attentional control. This finding aligns with research showing

that relaxation techniques can enhance cognitive flexibility and inhibitory control

(Mrazek, Franklin, Phillips, Baird, & Schooler, 2013; Tang et al., 2007). Fewer errors

in the Stroop task are consistent with previous research linking mindfulness training

to reduced activation of the brain’s default network, which is associated with mind

wandering (Kane & Engle, 2003). This enhanced ability to maintain focus on a

single aspect of experience, despite interruptions, can prevent crucial task-relevant

information from being displaced by distractions, ultimately leading to improved

working memory (WM) capacity (Mrazek et al., 2013). Similarly, the Guided Imagery

(GI) group performed better on the Anti-Saccade task, making fewer errors (F = 7.31,

p = 0.01). The results indicate no significant difference in errors on the Go/No-Go

task between the Guided Imagery (GI) and Mental Task (MT) groups, suggesting that

the intervention’s impact on inhibitory control might be task-specific or may require a

longer duration to manifest significantly. This aligns with the findings of Lutz (Lutz et

al., 2008), which demonstrate that different cognitive tasks can vary in their sensitivity

to mindfulness and relaxation interventions. The lack of significant improvement in

the Go/No-Go test might be attributed to its relatively lower cognitive demand, which

may not be sufficiently challenging to capture the benefits of Guided Imagery (GI).

As such, more complex tasks or extended intervention periods may be necessary to

observe notable effects on inhibitory control.

Pearson’s R correlations were conducted to examine the relationships be- tween

different variables. The Tab. 3.3 presents the correlation coefficients, which suggest

that higher Alpha Power at the 14th minute was significantly associated with better

performance on the Numerical Stroop and Anti-Saccade tasks. The significant neg-

ative correlations between alpha power and the number of errors in the Stroop and
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Table 3.3: Correlations Between Measures. Note: * p < .05, ** p < .01. (Zemla,
Sedek, et al., 2023)

Anti-Saccade tasks (r = -0.35 and r = -0.45, respectively) align with the literature

indicating that increased alpha power is associated with enhanced cognitive perfor-

mance. Alpha waves, typically observed in a state of relaxed wakefulness, are linked

to better attentional control and reduced cognitive interference. Studies have shown

that alpha activity facilitates inhibitory control, thereby improving performance on

tasks requiring attention and cognitive flexibility (Klimesch, 1999; Jensen & Mazaheri,

2010).The positive correlation between alpha power and stress reduction (r = 0.29)

corroborates research suggesting that relaxation techniques, which enhance alpha ac-

tivity, are effective in reducing stress (Davidson et al., 2003). This reduction in stress

likely contributes to improved cognitive performance by minimizing the cognitive load

and emotional interference that stress can cause (Lupien et al., 2009). The negative

correlation between the number of errors in the Stroop and Anti-Saccade tasks (r =

-0.38) is supported by findings that both tasks measure aspects of executive function

and attentional control. Effective management of attentional resources and inhibition

of automatic responses are critical in both tasks, and improvements in one are often

reflected in better performance in the other (Miyake et al., 2000). A reduction in

error rate on the Stroop test is also indicative of the complex interplay among various

cognitive functions. These include the capacity of our working memory to handle

49



Figure 3.2: The effect of GI on reducing erroneous reactions in the Stroop test is
mediated by Alpha Power at 14 minutes (Zemla, Sedek, et al., 2023)

information, our proficiency in directing attention, and our competence in managing

conflicting demands (Kane & Engle, 2003). The strong positive correlation between

STAI Trait and STAI State (r = 0.74) is consistent with the literature indicating

that individuals with high trait anxiety are more likely to experience higher levels of

state anxiety in stressful situations (Spielberger, 1983). These findings collectively

support the hypothesis that Guided Imagery (GI), through its effects on alpha power,

can enhance cognitive performance and reduce stress. The improvement in cognitive

tasks can be attributed to better attentional control and reduced cognitive interfer-

ence facilitated by increased alpha activity. Furthermore, the reduction in stress and

anxiety highlights the potential of Guided Imagery (GI) as an effective intervention

for enhancing mental well-being and cognitive function.

The study also employed mediation models (Fig. 3.2 & Fig. 3.3) to investigate the

relationship between Guided Imagery (GI), alpha power, and cognitive performance,

which provided understanding of the interplay between these variables. The medi-

ational models elucidate the potential mechanisms through which Guided Imagery

(GI) can affect cognitive performance and underscore the necessity for additional

investigations to gain a deeper understanding of this domain. The significance of

the t-values in the mediation models supports the relationships depicted, indicating
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Figure 3.3: The effect of GI on reducing erroneous reactions in the Anti-Saccade test
is mediated by Alpha Power at 14 minutes (Zemla, Sedek, et al., 2023)

that the observed coefficients are unlikely to have occurred by chance. These results

are consistent with the findings of studies on mindfulness and relaxation techniques,

which have shown that such interventions can lead to increased alpha activity, re-

duced stress, and improved cognitive function. For instance, Davidson (Davidson

et al., 2003) demonstrated that mindfulness training can increase alpha power and

enhance emotional regulation and cognitive performance. Thus, the current findings

reinforce the notion that Guided Imagery (GI), by promoting a relaxed and focused

mental state, can effectively enhance attentional control and reduce cognitive errors

in demanding tasks. The findings also align with the work of Kane and Engle (Kane

& Engle, 2003), who identified individual differences in working memory (WM) ca-

pacity as a significant predictor of performance on the Stroop task. Their research

emphasized the importance of executive control and goal maintenance in selective

attention, particularly in contexts that present competition between task goals and

habitual responses. In the current study, Guided Imagery may have enhanced work-

ing memory (WM) capacity, allowing participants to better manage interference and

maintain task goals in the Stroop and Anti-Saccade tasks. The dynamic interaction of

memory maintenance and attention control, as proposed by Kane and Engle (Kane &

Engle, 2003), is reflected in the significant improvements observed in the Guided Im-

agery (GI) Group. The attentional and executive components of the working memory
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(WM) system likely drove these enhancements, supporting the notion that working

memory (WM) capacity is crucial for maintaining representations of external stimuli,

action plans, and task-relevant information in an accessible state.

The current study provides valuable insights into the selective enhancement of

cognitive control and attentional regulation through Guided Imagery (GI). The better

performance of the Guided Imagery (GI) Group in the Numerical Stroop and Anti-

Saccade tasks highlights the potential of Guided Imagery (GI) to enhance higher-

order executive functions, particularly in tasks involving significant cognitive load

and complexity.

3.1 Research limitation

In interpreting the results, it is important to take into account the study’s various

limitations. The first is that the relatively small sample size used in this study might

limit the generalizability of the findings to larger populations or other demographic

groups. Because of this, care should be taken when extrapolating the findings to larger

contexts. Additionally, the study’s primary focus was on healthy male participants

without any prior Guided Imagery (GI) session experience and no ongoing medical

conditions. As a result, the results’ applicability to other populations or people with

particular medical conditions may be constrained. The study also focused mainly

on the immediate results of the Guided Imagery (GI) session. Future studies should

look into long-term benefits. When considered collectively, these limitations highlight

the need for future research using larger and more varied samples, longer follow-up

times, and more control groups. By addressing these methodological issues, a more

thorough understanding of the efficiency and potential limitations of Guided Imagery

can be attained, not only in the context of stress management but also in terms of

improving attentional control test results. Such research will advance Guided Im-
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agery’s potential as a therapeutic intervention and offer insightful information about

the broader cognitive advantages of the technique.
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Chapter 4

Conclusion and Future Directions

The researchers’ hypotheses were supported by the findings, as the Guided Imagery

(GI) intervention resulted in increased alpha power and improved performance on

attentional tests, particularly the Stroop and Anti-Saccade tests. The study’s medi-

ational model sheds light on the relationship between Guided Imagery (GI), alpha

power at the 14th minute, and performance on attentional control tasks. The study

contributes to the understanding of the interplay between Guided Imagery (GI), alpha

power, and cognitive control, offering promising directions for future research on the

applications of Guided Imagery (GI) in enhancing cognitive function and managing

stress. The results align with existing theories on working memory (WM) capac-

ity and attention control, reinforcing the critical role of WM in complex cognitive

processes and its potential for improving executive function through targeted inter-

ventions (Lutz et al., 2008). Nevertheless, further research is necessary to validate

these findings and delve into the underlying mechanisms of this relationship.

Additionally, the study’s utilization of multi-sensor EEG signal classification and

a General Linear Model (GLM) highlights the potential for developing new Human-

Machine Interaction therapies. The efficiency of the classifiers increased with longer or

more signal input, achieving accuracy rates of 68% with a 3-second interval, 78% with
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1-minute intervals after 13 minutes, and approximately 92% for the entire 20-minute

time range. Machine learning classifiers offer a dependable method for categoriz-

ing brain states during relaxation, where increased signal input duration or quantity

correlates with higher accuracy. The study’s results have implications for the de-

velopment of interventions to enhance cognitive and emotional functioning, as well

as the utilization of BCIs and real-time support systems. In addition CNNs could

improved efficiency in data collection with the knowledge that a smaller subset of

electrodes can be as effective as a larger set, the process of data collection for BCIs

can be streamlined, reducing the complexity and cost of EEG setups. Future research

should investigate the long-term effects of GI interventions, explore the relationships

between cognitive and emotional measures, and further refine the application of ma-

chine learning in this context.

Overall, this study highlights the potential for combining traditional cognitive and

emotional interventions with cutting-edge technology and advanced modeling tech-

niques to create more effective and personalized treatments for a range of disorders.

The consistency of these findings with mindfulness research further validates the

efficacy of Guided Imagery (GI) as a tool for cognitive enhancement and stress man-

agement. Further research in this area will advance our understanding of the sustained

effects and interplay between cognitive and emotional domains, ultimately leading to

the refinement of interventions promoting overall cognitive and emotional well-being.

Future research should continue to explore the long-term effects of Guided Imagery

(GI) and its applications in clinical settings to support individuals facing cognitive

and emotional challenges.
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Chapter 5

Contribution to the science

This study aims to fill a research gap by investigating the quantitative modeling of

brainwave activities during GI. What sets this study apart from previous research is

its focus on exploring brainwave patterns associated with GI relaxation, specifically

the increase in alpha power, which indicates a state of relaxation and enhances at-

tention test results. The study utilizes dense array electroencephalography (EEG)

and machine learning techniques to classify and model the recorded brain signals

obtained during Guided Imagery and mental workload tasks. By employing EEG

signal analysis and general linear model (GLM) classifiers, this research presents a

unique approach to understanding and differentiating brain states associated with

Guided Imagery and mental workload. This methodology opens up possibilities for

the development of therapy-oriented brain-computer interfaces, which can accurately

discern states of relaxation from mental workload. These interfaces hold tremendous

potential in providing computer-based interventions for anxiety and stress reduction.

Accurately distinguishing brain states associated with relaxation can facilitate the

creation of therapy-oriented brain-computer interfaces that deliver personalized in-

terventions to individuals in need.

The study also expands on previous research that has examined the effects of
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relaxation techniques on attention and executive functions. While current literature

has shown improvements in attentional control and executive function with mindful-

ness practices, there is a lack of research specifically focusing on the effects of GI on

attentional tasks. By investigating attentional performance using established tests

such as the Stroop task, Anti-Saccade task, and Go/No-Go task, the study verifies

the impact of Guided Imagery (GI) on cognitive inhibition, selective attention, and

response inhibition.

By elucidating the efficacy of GI in inducing relaxation and improving cognitive

functions, this research sets the stage for exploring innovative treatment modalities

tailored to combat the escalating incidence of anxiety-related disorders. Leveraging

GLM models to enhance the effectiveness of GI interventions for individuals holds

promise in optimizing therapeutic outcomes and meeting the diverse needs of those

affected by anxiety and stress.
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Chapter 6

A chapter and articles comprising the

thesis

6.1 Investigating the lnfluence of Guided lmagery

Relaxation on the Selected Electrophysiological

Parameters of Human Body
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1 Research background and the existing state of
knowledge

Hypnosis, hypnotherapy and techniques like Guided Imagery (GI) are widely
recognised as method supporting a wide range of therapies, including oncotherapies
and mental disorders.

The primary objective of this paper is to present the literature review of the
relaxation techniques appliance in supporting the health recovery programs is pre-
sented.

The secondary objective of this paper is to conduct the pilot study aimed at
measurement of electrophysiological parameters: EEG brain cortical activity, pulse
and blood saturation of the patient exposed to Guided Imagery hypnosis.

There are numerous examples of using hypnotherapy in the treatment of pa-
tients affected by HIV, ARC, or AIDS, among others [21]. For example, Auerbach
demonstrated a meaningful reduction in physical symptoms associated with HIV,
such as fever, pain, nausea, and a significant increase in activity and resilience
in case of patients with ARC and AIDS who participated for 8 weeks in a group
program that used biofeedback, imagery, and hypnosis, as compared to a control
group [1]. Gochros used hypnosis in simultaneous individual and group therapy of
seropositive patients in order to strengthen their ability to cope with the diagnosis
and reduce the resulting stress [21]. His results showed a positive effect of hypnosis

⇤
Corresponding author — kzemla1@st.swps.edu.pl

21



22 K. Zemła, G. M. Wojcik, F. Postępski, Ł. Kwaśniewicz, A. Kawiak

on anxiety and helplessness. Mentioned 8-week-long group program of Kelly, which
included self-hypnosis and meditation training, was shown to help reduce stress
and improve self-control and the daily quality of life of patients [14].

Newton and Marx used imaginal hypnosis in the Simonton approach with 4 men
(10 individual sessions) and 22 men (10 group sessions) in order to improve the
long-term survival of the patients [19]. Significant reduction of stress decreased
anxiety related to their condition, and increased activity was observed in the case
of patients who received the individual therapy.

The abovementioned Simonton method was first used in 1971 by Carl Simonton,
an American physician and radiation oncologist. It had been then developed for
more than 30 years. Simonton introduced the systematic use of psychotherapeutic
interventions as a necessary extension of conventional cancer treatment [9, 29,
30]. Criticism of his studies and his reports on the positive therapeutic results
of his approach to the treatment of patients affected by cancers initiated long
series of standardized clinical trials. For instance, David Spiegel [33] confirmed the
effectiveness of this approach.

Patients with distant metastases of advanced breast cancer were divided into
two groups. Patients who additionally participated in a cognitive-behavioral ther-
apy program as an adjunct to standard cancer therapy showed significantly better
outcomes than patients in the control group who were only treated according to the
current standards. Fawzy [8] came to similar conclusions regarding psychotherapeu-
tic intervention in the treatment of patients diagnosed with malignant melanoma.
And despite the clinically proven beneficial results of the use of cognitive-behavioral
therapy increasing the level of coping with the situation after diagnosis, reducing
the stress experienced, and having a beneficial effect on life expectancy after di-
agnosis has not resulted so far to attach such a standard of treatment support to
all patients although it is known that the lifespan of the included participants in
Fawzy’s study was statistically twice as long [8]. The innovative concept to help
patients using VR methods has the potential to change that and enable patients to
support their treatment from the psychological edge. It is known and proven that
when patients “think healthy” it supports recovery because they are able to:

• Enter a state of relaxation and relaxation as often as possible. Before and
after, but also, if possible, during medical procedures.

• Put the brain into an alpha state and imagine positive scenarios of how my
body, organs, and cells are healing under the influence of the applied therapy.

• Understand that these visualizations and alpha state are the way to support
the immune system, as well as a pathway in its conditioning process.

• On the grounds of experiences (including those from virtual reality) build
realistic and positive beliefs about one’s condition, the medical procedures
used, and the processes of treatment and recovery.

From the neuroscientific perspective adopted by Rossi [24], it is the patient’s
creative activity that generates, through the neuroplasticity of the brain, new neu-
ronal connections so-called “miracle of healing based on the body-mind relation-
ship.” This deeply meaningful, internal creative mental process produces a hypnotic
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experience for problem-solving problems and healing. Healing is located within the
patient. The therapist has no secret powers to control or heal. Patients heal them-
selves if they are lucky enough to receive the right “therapeutic suggestions” and
psychological support which is described as “implicit heuristics of processing.”

Research on implicit processing heuristics should take advantage of the current
level of neuroscience and computer data processing and available technologies to
build upon that [7]. For this purpose, our EEG study allows, among other things,
the analysis of the amplitude and frequency of brain waves under hypnosis.

Several basic waves can naturally appear in the EEG recordings:

• Alpha waves (frequency 8–13 Hz, amplitude 30–100 µV) — are the rhythmic
activity of the cerebral cortex in the 8–12 Hz range. This is one of the earliest
observed structures (graphemes) of the EEG. The occurrence of the frequency
of the rhythm alpha is attributed to the state of relaxation with eyes closed.
Alpha waves are best seen in the posterior (occipital) leads, that is, from
around the part of the cortex responsible for processing visual information.
The alpha rhythm is of fundamental importance in EEG analysis of sleep.
Although it does not occur during actual sleep it is indicative of the patient’s
“pre-sleep” wakefulness, and its disappearance signifies the transition from
the waking state to shallow sleep. They are also attributed to a state of rest.
Reduced alpha wave amplitude is noted in stressed individuals and those with
an elevated state of anxiety.1.

• Beta waves (frequency 12–30 Hz, amplitude >30 µV) In the beta spectrum,
the following compartments are distinguished: slow beta waves (12–15 Hz),
the proper intermediate beta band (15–18 Hz), and fast beta waves, with
frequencies above 19 Hz. This unsynchronized neuronal activity characterizes
the usual daily activity of the cerebral cortex in humans. The range of this
frequency is observed during the state of active functioning, wakefulness, and
alertness. It increases during logical thinking when attention is directed to
cognitive tasks and the external world.2

• Theta waves (frequency 3.5–8 Hz) — activity in the frequency band from 3 to
7 Hz and a spread of several tens of µV. Characteristic theta waves occur, for
instance, during the period of shallow sleep — it is assumed that during this
time the assimilation and consolidation of learned content take place. Theta

1
Low alpha (8–10 Hz) — is the range of waves with a frequency below the peak of alpha in the

test person, with the eyes closed. With age, a decrease in the peak frequency of this wave. The

higher peak frequency of this wave is found in more cognitively fit individuals. This frequency

band is associated with meditation, with maintained calmness and relaxation. Low alpha is subject

to diurnal fluctuations and we can note its higher amplitudes between the hours of 11 a.m. to

3 p.m. Significant fatigue of the subject can also affect the spectrum of this waveform [38]. High

alpha (11–12 Hz or 11–13 Hz) — this frequency occurs when the state of high awareness of the

environment. In this state, the brain can react quickly a precisely to changes in the environment.

Waves of this band are a state of mental and physical calm, also known as the “zona” state.

The mind is focused on the given moment “here and now,” It is a state associated with high

concentration and certainty of action [11].
2
SMR sensory rhythm (13–15 Hz) — is observed in the sensory band of the cortex cerebral

cortex. It is a spindle-shaped waveform. It determines the state of alertness, but without muscle

tension muscles. It is a state in which high concentration is achieved. An understated amplitude

of this wave may indicate problems with maintaining focused attention [11].



24 K. Zemła, G. M. Wojcik, F. Postępski, Ł. Kwaśniewicz, A. Kawiak

waves are the most common present brain waves during meditation, trance,
hypnosis, intense dreaming, and intense emotions. It is mainly observed In
the medial part of the front part of the cerebrum.3

• Delta waves (frequency 1–3 Hz) are high-amplitude activity with a low fre-
quency (0–4 Hz) and a duration of at least 1/4 s. For practical purposes, the
lower limit of frequency was assumed to be 0.5 Hz. Appearing during deep
sleep, delta waves with an amplitude of more than 75 µV are called slow
waves (SWA). Their appearance is due to the high synchronization of cor-
tical neurons (a higher one is encountered only during an epileptic attack).
Delta waves are also recorded during deep meditation in young children and
the case of certain types of brain damage.4

• Gamma waves (frequency 25–100 Hz) — activity in the Hz frequency band is
referred to instead referred to as high-frequency (high) gamma. The gamma
rhythm accompanies motor activity and motor functions. Gamma waves are
also associated with higher cognitive processes, including sensory perception,
and memory, among others. It is speculated that gamma rhythms modu-
late perception and consciousness and that the greater appearance of gamma
waves relates to expanded consciousness and spirituality [11].

Regardless of culture, race, upbringing, religion, and political views, all peo-
ple with biologically intact brains experience stress in the same stereotypical way.
The basis of such a stereotypical response to life-threatening situations are neu-
rophysiological processes, related to the stimulation of the relevant areas of the
central nervous system, which influences the immune system through the auto-
nomic nervous system (sympathetic and parasympathetic), the endocrine system,
and a direct effect on the limbic-hypothalamic system secreting immunomodulat-
ing neuropeptides [43]. This allows one to measure how even stagnant stress levels
may change when applying stress reduction factors such as relaxation and visual-
ization. Knowing that study conducted in 1987 by Kempthorne-Rawson, Persky,
and Shekelle proves that pessimism and depression contribute to higher mortality
among patients with cancer such methods to reduce its level should be included
in standard treatment. In the 1950s, West, Blumberg, and Ellis showed that the
rate of tumor growth is more related to psychological factors than to the degree of
tumor differentiation found on histopathological examination [42].

Knowing how the body behaves in a relaxed or stressed state, it is possible to
construct tests and use such measurements that will collect signals from heart, skin,

3
Theta waves are associated with the extraction of information from memory and the ability

to control reactions to stimuli. At this frequency, we are aware of our surroundings while the body

is in a state of deep relaxation. They are associated with conscious observation of the environment

(thalamic nuclei of the brain). In the state of theta waves, very creative thoughts, inspirations,

and imaginations. This frequency helps recall memories, fantasies, and associations. In contrast,

excessive amounts of theta waves have been reported in people with attention deficit disorder [11].
4
Delta waves are the slowest of all brain waves. They occur during deep sleep and account for

more than 50% of recorded brain activity. They have also been observed during transcendental

meditation. Information received at this level is usually unavailable at the level of consciousness.

Delta waves dominate the QEEG spectrum in infants up to 6 months of age. age. They are also

recorded in brain damage and in brain tumor diagnoses [11].
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or brain activity, so that researchers will be able to prove that hypnosis brought ex-
pected changes within the patient’s body. For example, using measurements such
as respiratory rate per minute, duration of inspiration and expiration, tidal vol-
ume (in ml), heart rate HR (in beats/minute), respiratory sinus arrhythmia RSA
(difference between the maximum and minimum heartbeat interval, in ms,) log-
arithm of HFHRV-transformed power in the high-frequency band of heart rate
variability, LF-HRV-transformed power in the low-frequency band of heart rate
variability can quantitatively demonstrate how appropriately timed relaxation by
modifying breathing patterns can put subjects into a relaxed state [39]. It is often
assumed that cardiorespiratory changes induced by breathing instructions trigger
a relaxation response [5]. Psychologically, breathing techniques usually induce an
increased focus on internal sensations and comparatively disregard external stimuli
[40]. Physiologically, most breathing exercises are designed to decrease sympathetic
activity and increase the parasympathetic activity of the nervous system [2]. Re-
sults from a study at the University of Leuven strongly suggest that voluntary
changes in the length of inhalation in comparison to exhalation are an important
determinant of participants’ reported relaxed states [39].

EEG studies on relaxation, on the other hand, show that a decrease in total
power in the entire cerebral cortex during the relaxation state means that the
brain activity of individuals during the relaxation process gradually decreases [36].
Physiological indicators of responses to relaxation introduced by Foster [17] include
reductions in oxygen consumption, respiration and heart rate, as well as an increase
in the production of alpha brain waves. Increased power of alpha and theta fre-
quencies and interhemispheric synchronization, especially frontal alpha coherence
[37] are usually considered as neurophysiological indicators of sensorimotor state
and mental rest.

Regular relaxation practice can affect various physiological and psychological
parameters related to aging, digestion, general well-being, and psychosomatic dis-
eases. Consequently, there is a growing need to monitor physiological processes
related to relaxation and stress response [25]. From the current literature on the
subject, it can be concluded that deep relaxation is most often led to by slow, deep
breathing at a frequency of 0.1 Hz.

In an article [25], the authors confirm that 6 breaths per min promote relax-
ation. In a book entitled “Relaxation, Meditations & Mindfulness” [31] mentions
techniques to achieve a state of deep relaxation. These include Yoga classes, where
progressive muscle relaxation and deep breathing occur. The author points out that
the breath should be slow and even, and sometimes deep or shallow. Relaxation
breathing has a rhythm in which the exhalation is slow and steady. At first, it may
be deep and later shallow without effort. In general, relaxed exhalation takes twice
as long (6 seconds) as inhalation (3 seconds).

We can divide the breathing process itself into:

• normal breathing (eupnoe) with a frequency of 0.25 Hz or 25 breaths per
min,

• slow breathing (bradypnoe) with a frequency of 0.1 Hz or 6 breaths per min,

• fast breathing (tachypnoe) with a frequency of 0.5 Hz.
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In the paper [4], researchers examined the effect of the respiratory cycle on
EEG. W order to do so, they compared the spectral analysis of the EEG signal
during inspiration and expiration.

Normal, slow, and fast breathing were checked. The researchers noted that
during inhalation with normal breathing, delta wave activity in the parietal region
and total activity in the frontal region. With fast breathing during inspiration,
there is a decrease in beta wave activity in the central region and activity in the
theta in the posterior temporal and occipital regions. Compared with the EEG
in eupnoe, bradypnoe and tachypnoe, there was a decrease in the spectral power
of all spectral bands except delta during faster respiration rates and vice versa,
with a significant difference found mainly between bradypnoe and tachypnoe, less
frequently between eupnoe and tachypnoe.

In another article [10], researchers examined the effect of breathing patterns on
EEG activity. They conducted the study on healthy participants. Each examined
had to breathe deeply and slowly (6 breaths per min), hold their breath, and
breathe quickly and deeply (30 breaths per min). The EEG signal was read from
the frontal, parietal and occipital regions of the head. The researchers detected
an increase in alpha and beta activity in the frontal region during deep and slow
breathing. In contrast, there was a process of decrease in the activity of these waves
in all regions during breath-holding. In the case of slow and deep breathing, only
alpha decreased.

The pace of speech we know from studies on the subject is that a healthy person
utters about 10–15 sounds per second. In the case of uttering a greater number of
them, i.e. 20 (or more), understanding the speaker’s speech is much more difficult.

Three modes of speaking tempo can be distinguished [34]:

• lento (slow, slow tempo),

• moderato (moderate),

• allegro (fast, English quick tempo).

Usually, texts are spoken at a moderato tempo. For longer speeches, as a rule,
there are different speaking tempos. Their interplay is a characteristic feature of
spoken language. a person pronounces an average of 10–15 vowels per second. The
pronunciation of 21 vowels per second is on the verge of speech intelligibility. The
time taken to pronounce syllables and vowels is measured in milliseconds. For ex-
ample, the duration of shortness consonants is about 40 milliseconds, while the
duration of an average syllable is 200–300 milliseconds. In fast speech, the average
duration of a vowel is 60–70 milliseconds, and in slow speech — 150–200 millisec-
onds. If only in connection with this knowledge, it would be necessary to adjust the
recording in such a way that the speaker speaking to the patient pronounces the
voices at a rate that is within the 150–200 millisecond range. Science is studying
also the effect of sound on our mood. Human responses to sound are experienced
on several different levels: physical, mental, cognitive, and behavioral [38].

Nevertheless, there are still relatively few studies that document the relevance
of this factor, especially at the level of interpersonal communication. Instead, we
know that one of the elements of effective psychotherapy is empathy, which also
expresses itself in non-verbal ways [17]. That’s why it’s so important to lean into
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the importance of speech characteristics, to consciously use the right sounds, tone
of voice, or tempo, as this translates into the reactions of physiological and mental
reactions that are induced in the recipient especially by using VR tools.

In the professional exchange of information, for example, in the psychotherapeu-
tic process, communication takes place simultaneously at the verbal and nonverbal
levels. Verbal communication without nonverbal transmission is practically non-
existent. Thus, there are areas where the way information is communicated is of
great importance not only for the quality of the future relationship such as patient
and doctor but also to trigger a psychosomatic response, which can be translated
into the functioning of the patient’s immune system. Indeed, it should be pointed
out that, for example, an appropriate tone of voice can allow for stress reduction
when communicating a diagnosis. A study from 2011 funded by the National Can-
cer Institute shows that nonverbal information revealed in a lower tone of voice and
a slower rate of speech gives the impression of being more empathetic [18]. This
has a direct bearing on the patient’s mental state, who feels better understood and
embraced with compassion [56]. And although more research has been conducted
within the realm of verbal empathic communication it is indicated that non-verbal
based on the tone of voice and rate of speech is equally important [28]. How the
message is conveyed is of particular importance important in the case of oncology
patients, who face high levels of stress, tension, and fears for their lives as they face
dealing with the disease [22].

Another study that confirms the importance of voice tone and tempo on levels
of relaxation was conducted in 2006 in the biofeedback research laboratory of the
Department of Behavioral Medicine and Psychiatry at West Virginia University. It
investigated the effectiveness of progressive relaxation training (PRT) on selected
vocal characteristics and its impact on the treatment process [15]. In the study
[15], the goal was to see how the volume, pitch, timbre of the voice, and intensity
of speech could affect the therapeutic process. As early as 1979, Ryan and Moses
showed [26] that a soft, melodious voice can translate into treatment effectiveness.
In addition to subjective assessment of the relaxation state or the subjects’ percep-
tion of speech characteristics, participants in the experiment had their heart rate
(HR) measured, and EMG signals were collected, verifying the electrical function
of the electrical activity of muscles and peripheral nerves. The intensity of the voice
conducting the relaxation training was measured in decibels, the tone of voice in
Hz, and the number of syllables per second of tape was calculated. The results
of the study clearly show that a voice that lowered and became more monotonous
during the session caused a significant reduction in EMG levels (electromyography)
which translated into a reduction in muscle tension. At the same time, the subjec-
tive feelings of the subjects confirmed that the way they used, and modulated their
voice in therapy had an impact on their level of relaxation.

Muscle tension, like other vegetative autoregulatory processes (body tempera-
ture, heart rate, blood pressure, intestinal motility, etc.) sweat secretion cannot be
controlled consciously. Since 1972, more than 1,500 articles have been published in
professional publications on GSR (cutaneous-galvanic response) is considered the
most popular method for studying the phenomena of human psychophysiological
phenomena [3]. Although GSR is an ideal measure for tracking emotional arousal,
it is unable to reveal the emotional valence i.e., the quality of the emotion. The
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true power of GSR unfolds when combined with other data sources to measure
complex dependent variables and provide a complete picture of emotional behav-
ior. Often, this test is performed in experiments involving games, or reactions to
images or videos presented [32]. This opens the way to seek quantitative answers
based on skin responses to further questions related to the mode of communication
used in the VR treatment program so that the solution can best serve to reduce
the patient’s stress level and support relaxation, to enhance the healing processes.

In research on voice analysis during discussions of bad news in oncology [18],
the author also states that no study analyzed verbal content, speech analysis, and
other related nonverbal behavior, and notes that this is a desirable research topic.
Most studies focus on listening to music and not the voice itself, these studies show
that relaxation music (e.g. Bach, Vivaldi, Mozart) results in a slowing of the heart
rate [6].

Music can strongly evoke and modulate emotions and mood, as well as changes
in heart function, blood pressure (BP), and respiration. In the various studies on
the effects of music on the heart, there is a wide variety of methods and quality,
but can be established that: heart rate (HR) and respiratory rate (RR) are higher
in response to exciting music compared to calming music [16]. W a study of music
therapy to help treat children with cancer, music reduced pain ratings, heart rate,
respiratory rate, and feelings of anxiety, during lumbar puncture, when children
had headphones with music, they felt less pain and were calmer and relaxed during
and after the procedure. All of these children wanted headphones with music when
they next undergo the procedure [20]. This proves that listening to music already
has its applications during medical therapies. There are not many publications that
talk about listening to the voice itself, but studies show that people already in the
womb can recognize the mother’s voice, which has been observed to reduce the
fetal heart rate [41]. Hypnosis (a recording with a slow breathing command) has
also been shown to reduce heart rate, even in stressful situations such as dental
procedures [6].

Thus, the VR treatment program’s assumption that listening to a calming voice
reduces heart rate appears to be true [23], and the creation of a device to monitor
heart rate and attempt to lower it using a voiceover and guided relaxing trance will
make it possible to study more closely how initially rhythmically spoken words at
the same rate as the initial heartbeat rhythm heart rate affects the heart rate after
the words are slowed down and whether the patient will calm down.

“The real power of understanding lies in not allowing our knowledge to be
fettered by what we do not know.” — stated Ralph Waldo Emerson — which is
why it is important to continue research and see what combinations between the
breath, the voice of the speaker, the rate of speech will bring the best effects thru
VR treatment.

2 Experiment description
The EEG laboratory (Fig. 1) in the Department of Neuroinformatics and

Biomedical Engineering at the Maria Curie-Skłodowska University in Lublin is
equipped with apparatus that allows the precise study of bioelectrical changes oc-
curring in the patient’s brain thanks to an EGI dense matrix amplifier (Electrical
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Figure 1: EEG laboratory in the Department of Neuroinformatics and Biomedical
Engineering at Maria Curie-Sklodowska University in Lublin, Poland

Geodesic Systems, Oregon, USA), to which caps equipped with 256 electrodes (Hy-
droCel GSN 130 Geodesic Sensor Nets) can be connected. The lab offers the ability
to record signals at frequencies up to 1000 Hz (with simultaneous measurements
by all 256 electrodes). The laboratory has a GPS photogrammetric station with
GeoSource software that enables the application of source localization algorithms
and the precise generation of a model of the subject’s brain.

For a trial approach aimed at designing a research protocol to answer the for-
mulated questions formulated by the Ordering Party, a relatively simple test was
proposed involving putting the patient (in this case, the Department Head) into
a state of deep relaxation by a qualified therapist (Katarzyna Zemla, M.Sc, SWPS
doctoral student, Master of Cognitive Behavior BIK ), and then recording the elec-
trical activity of his brain in four main activity bands (alpha, beta, theta, delta) and
measuring his heart rate and hemoglobin saturation throughout the entire study.

Hemoglobin saturation (SpO2) in the blood was measured using a Kermed A310
pulse oximeter. Heart rate was measured using a Xiaomi Mi Band 5. After the test,
the patient was measured at a photogrammetric station. During the main part of
the study, only the patient and the therapist were in the laboratory room, and
twilight prevailed. The lab technicians were present only during the preparation
of the patient and during the geodetic measurements. The study conducted on
December 11, 2020, lasted 30 minutes.
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Figure 2: Percentage of each wave during the experiment

3 Experiment description

The percentage of each band of the electrical activity of the patient’s cerebral
cortex during the test is shown in Fig. 2. Changes in the subject’s heart rate during
the experiment are presented in Fig. 3. A graph of changes in hemoglobin saturation
is shown in Fig. 4.

We can observe an increasing and then relatively high proportion of delta waves
starting from about 870 seconds of the test (see. Fig. 2). This is accompanied by
a relatively high proportion of alpha and theta waves at the beginning of the study
with a low level of beta waves throughout the experiment. Starting at 870 seconds
of the survey, there is a slight decrease in the contribution of alpha and theta waves
as delta activity increases (see. Fig. 2).

The increase in delta activity is accompanied by an increase in pulse rate
(see. Fig. 3) and a slight but observable increase in hemoglobin saturation (SpO2)
(see. Fig. 4).

As is well known, the more than 50% contribution of delta waves to brain
activity is associated with the phase of deep meditation or deep sleep. It can be
presumed that an increase in the patient’s delta brain activity above 60% in the
study was related to the therapist’s attempt to by the therapist to obtain the
phenomenon of dreaming in sleep, which took place at that time. time. On the
other hand, the increase in pulse rate may indicate a correlation between this
phase with the visualizations occurring in the patient’s state at the time of the
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Figure 3: Pulse variations during the experiment

Figure 4: Hemoglobin saturation level (SpO2) during the experiment



32 K. Zemła, G. M. Wojcik, F. Postępski, Ł. Kwaśniewicz, A. Kawiak

examination. Theta waves at relatively high levels (about 30% on average) confirm
the state of hypnosis into which the patient was put, also a state associated with
shallow sleep; their decrease starting at 870 seconds indicates a rapid transition of
the patient into a state resembling deep sleep.

It is difficult to conclude a single case. However the study pilot study was
intended to show that we have the possibility of reliable quantitative recording of
the electrical activity of the cerebral cortex and combined with a relatively simple
to use and inexpensive apparatus, we can look for correlations of this activity
with pulse rate and blood hemoglobin saturation (SpO2). After connecting the
galvanometer it will be possible to study stress levels changes.

4 Recommendations

4.1 The rationale behind the VR treatment concept
The originators of the project rightly point out that the poor mental state in

which most oncology patients find themselves reduces their quality of life during
and after the various stages of treatment and can delay the processes of treatment
and recovery. Therefore, the goal of the VR treatment program is to improve the
mental state of patients so that they can experience positive emotional states even
if they do not have the exceptional mental strength and are not able to control their
thoughts and negative states. Patients by putting on the goggles and headphones
could create new experiences and build positive beliefs and attitudes toward the
healing and treatment process and reinforces and stabilizes a positive emotional
state. In contrast, the poor mental state in which most oncology patients prolongs
and impedes the treatment and recovery processes, and above all, reduce the quality
of life during treatment. VR solution would allow the solution even if we face
difficulty with access to specialized psycho-oncological help.

Carl Simonton’s therapy, mentioned earlier, is based on activities in the follow-
ing areas: behavior (relaxation, creating new habits), beliefs (changing unhealthy
beliefs to ones that give us peace of mind and energy to act), emotions (maintaining
hope, dealing with emotions that harm us, learning to cope with everyday stressful
situations), spirituality, communication with supportive people (building a support
system, learning healthy communication), and physicality (diet, movement, the role
of play in the recovery process).

The many assumptions not only of selecting the most effective method but also
of how to combine it with technology, which today offers the possibility of creating
virtual worlds, cause many hypotheses and unknowns to arise, which need to be
further investigated and verified. The relaxation module itself, for it to respond
to changes in the patient’s physiological state as well as the therapist must be
designed to respond to his breathing, pulse, or measuring changes in the skin’s
electrical resistance.

When relaxation is led by a therapist, he or she often sees and adjusts the
guidance of the body relaxation and visualization to the patient’s breathing. The
hypnotherapist can see when the patient’s chest is on the inhale and lowers on the
exhale. So the open question remains how to map this alignment when the patient
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puts on the goggles and receives instructions from the VR treatment program in
the most effective way?

4.2 Recommended research
To extend current phase of conducted pilot study it is recommended to proceed

with further steps such as:

• In-depth research on the susceptibility of patients to relaxation intervention
depending on a set of variables obtained from psychological questionnaires:
anxiety, depressiveness, introverted, extroverted personality types which may
determine natural attitude toward diagnosis.

• Conducting experiments to build classifiers capable of suggesting the most
appropriate pace and method of conducting the relaxation intervention.

• Conducting experiments to test the performance of the constructed clarifiers.

This is the initial stage of our project.
Depending on the personal properties and external influence each patient can

have an individual ability to be exposed to relaxation, varying in time and other
conditions.

In future, it will be useful to investigate the pace at which particular subjects
get into a deep state of relaxation. It was only our expectation that they ought to
do this in around 14 minutes. However, each individual can be characterised and
most probably is by his own pace. Plotting their state in the function of time would
be recommended.

Using machine learning classifiers is expected to find application in the classifi-
cation of biomedical signals towards therapy support citedylkag2021pilot, mikola-
jewska2014non. Machine learning tools and algorithms have been used for decades
also for lots of disorders diagnostics like alcoholism or depression [27, 12] and others
[47] using new measures like those defined in [46] as well as advanced modelling of
biological systems behaviour [35] including diagnostics purposes [13, 44, 45].

Acknowledgements
Research presented herein was supported by the City of Lublin as a part of co-

operation of Lublin City Hall and Maria Curie-Sklodowska Univeristy towards pilot
study for VRMed project. The Authors would like to thank Ms. Ewa Lewandowska
and Mr. Marek Rudziński of VRMed for fruitful discussions, inspiration and pos-
sibility of working together on new ideas.

References
[1] JE Auerbach, TD Oleson, and GF Solomon. Biofeedback, guided imagery,

and hypnosis as an adjunctive treatment for aids and aids-related complex. In
Proceedings o f the Third National Conference on the Psychology of Health,



34 K. Zemła, G. M. Wojcik, F. Postępski, Ł. Kwaśniewicz, A. Kawiak

Immunity, and Disease in Storrs, CT: The National Institute for the Clinical
Application of Behavioral Medicine, volume 50, 1992.

[2] Gary G Berntson, John T Cacioppo, and Karen S Quigley. Respiratory sinus
arrhythmia: autonomic origins, physiological mechanisms, and psychophysio-
logical implications. Psychophysiology, 30(2):183–196, 1993.

[3] Wolfram Boucsein. Electrodermal activity. Springer Science & Business Media,
2012.

[4] P Bušek and D Kemlink. The influence of the respiratory cycle on the eeg.
Physiol Res, 54:327–33, 2005.

[5] Bruce M Cappo and David S Holmes. The utility of prolonged respira-
tory exhalation for reducing physiological and psychological arousal in non-
threatening and threatening situations. Journal of psychosomatic research,
28(4):265–273, 1984.

[6] Gianfranco Cervellin and Giuseppe Lippi. From music-beat to heart-beat: a
journey in the complex interactions between music, brain and heart. European
journal of internal medicine, 22(4):371–374, 2011.

[7] K Davies. Search and deploy. bio–it world, october 16, 2006, 2006.

[8] Fawzy I Fawzy, Nancy W Fawzy, Christine S Hyun, Robert Elashoff, Donald
Guthrie, John L Fahey, and Donald L Morton. Malignant melanoma: Effects
of an early structured psychiatric intervention, coping, and affective state on
recurrence and survival 6 years later. Archives of general psychiatry, 50(9):681–
689, 1993.

[9] Howard S Friedman. Encyclopedia of mental health. Academic Press, 2015.

[10] Sarnik Gaurav, Sinha Meenakshi, Ghate Jayshri, and Sinha Ramanjan. Effect
of alterations in breathing patterns on eeg activity in normal human subjects.
Int J Curr Res Med Sci, 2:38–45, 2016.

[11] John H Gruzelier, Trevor Thompson, Emma Redding, Rosemary Brandt, and
Tony Steffert. Application of alpha/theta neurofeedback and heart rate vari-
ability training to young contemporary dancers: State anxiety and creativity.
International Journal of Psychophysiology, 93(1):105–111, 2014.

[12] Erwin Roy John, LS Prichep, J Fridman, and P Easton. Neuromet-
rics: computer-assisted differential diagnosis of brain dysfunctions. Science,
239(4836):162–169, 1988.

[13] Aleksandra Kawala-Sterniuk, Michal Podpora, Mariusz Pelc, Monika
Blaszczyszyn, Edward Jacek Gorzelanczyk, Radek Martinek, and Stepan
Ozana. Comparison of smoothing filters in analysis of eeg data for the medical
diagnostics purposes. Sensors, 20(3):807, 2020.

[14] PJ Kelly. Evaluation of a meditation and hypnosis-based stress management
program for men with hiv. In Poster presented at the Fifth International
Conference on AIDS, Montreal, 1989.



Investigating the Influence of Guided Imagery Relaxation on the Selected. . . 35

[15] Glenn E Knowlton and Kevin T Larkin. The influence of voice volume, pitch,
and speech rate on progressive relaxation training: application of methods from
speech pathology and audiology. Applied psychophysiology and biofeedback,
31(2):173–185, 2006.

[16] Stefan Koelsch and Lutz Jäncke. Music and the heart. European heart journal,
36(44):3043–3049, 2015.

[17] Margaret McCoy Lynch. Factors influencing successful psychotherapy out-
comes. Master of Social Work Clinical Research Papers, 2012.

[18] Monica McHenry, Patricia A Parker, Walter F Baile, and Renato Lenzi. Voice
analysis during bad news discussion in oncology: reduced pitch, decreased
speaking rate, and nonverbal communication of empathy. Supportive Care
in Cancer, 20(5):1073–1078, 2012.

[19] P Newton and L Marx. The Clinical Use of Hypnotic Imagery in HIV Positive
Men. The Center, 1990.

[20] Thanh Nhan Nguyen, Stefan Nilsson, Anna-Lena Hellström, and Ann Bengt-
son. Music therapy to reduce pain and anxiety in children with cancer un-
dergoing lumbar puncture: a randomized clinical trial. Journal of Pediatric
Oncology Nursing, 27(3):146–155, 2010.

[21] Burkhard Peter. Hipnoza i psychoterapia pacjentów z hiv, arc i aids. hypnosis
and psychotherapy with hiv, arc and aids patients. Psychiatria polska, 1(23),
2005.

[22] JT Ptacek and Tara L Eberhardt. Breaking bad news: a review of the litera-
ture. Jama, 276(6):496–502, 1996.

[23] A Ramírez-Carrasco, C Butrón-Téllez Girón, O Sanchez-Armass, and
M Pierdant-Pérez. Effectiveness of hypnosis in combination with conventional
techniques of behavior management in anxiety/pain reduction during dental
anesthetic infiltration. Pain Research and Management, 2017, 2017.

[24] Ernest Lawrence Rossi. The Breakout Heuristic: The New Neuroscience of
Mirror Neurons, Consciousness, and Creativity in Human Relationships. Mil-
ton H. Erickson Foundation Press, 2007.

[25] Marc A Russo, Danielle M Santarelli, and Dean O’Rourke. The physiological
effects of slow breathing in the healthy human. Breathe, 13(4):298–309, 2017.

[26] Victor L Ryan and James A Moses. Therapist warmth and status in the
systematic desensitization of test anxiety. Psychotherapy: Theory, Research &
Practice, 16(2):178, 1979.

[27] Nilima Salankar, Saeed Mian Qaisar, Paweł Pławiak, Ryszard Tadeusiewicz,
and Mohamed Hammad. Eeg based alcoholism detection by oscillatory modes
decomposition second order difference plots and machine learning. Biocyber-
netics and Biomedical Engineering, 2022.



36 K. Zemła, G. M. Wojcik, F. Postępski, Ł. Kwaśniewicz, A. Kawiak

[28] Klaus R Scherer, Tom Johnstone, and Gundrun Klasmeyer. Vocal expression
of emotion. Oxford University Press, 2003.

[29] O Carl Simonton and STEPHANIE MATTHEWS-SIMONTON. Cancer and
stress counselling the cancer patient. Medical Journal of Australia, 1(13):679–
683, 1981.

[30] O Carl Simonton, Stephanie Matthews-Simonton, and T Flint Sparks. Psycho-
logical intervention in the treatment of cancer. Psychosomatics, 21(3):226–233,
1980.

[31] Jonathan C Smith. Relaxation, meditation, & mindfulness: A mental health
practitioner’s guide to new and traditional approaches. Springer Publishing
Company, 2005.

[32] Mohammad Soleymani, Sadjad Asghari-Esfeden, Maja Pantic, and Yun Fu.
Continuous emotion detection using eeg signals and facial expressions. In
2014 IEEE International Conference on Multimedia and Expo (ICME), pages
1–6. IEEE, 2014.

[33] David Spiegel, HelenaC Kraemer, JoanR Bloom, and Ellen Gottheil. Effect of
psychosocial treatment on survival of patients with metastatic breast cancer.
The lancet, 334(8668):888–891, 1989.

[34] E Szeląg. Nowe tendencje w terapii logopedycznej w świetle badań nad
mózgiem,[w:] podstawy neurologopedii. Podręcznik akademicki, red. T.
Gałkowski, G. Jastrzębowska, E. Szeląg, Opole, pages 1028–1048, 2005.

[35] Ryszard Tadeusiewicz. Neural networks as a tool for modeling of biological
systems. Bio-Algorithms and Med-Systems, 11(3):135–144, 2015.

[36] Michal Teplan, Anna Krakovská, and Marián Špajdel. Spectral eeg fea-
tures of a short psycho-physiological relaxation. Measurement Science Review,
14(4):237–242, 2014.

[37] Frederick Travis. Autonomic and eeg patterns distinguish transcending from
other experiences during transcendental meditation practice. International
Journal of psychophysiology, 42(1):1–9, 2001.

[38] Julian Treasure. Sound business. Management Books 2000 Limited, 2011.

[39] Ilse Van Diest, Karen Verstappen, André E Aubert, Devy Widjaja, Debora
Vansteenwegen, and Elke Vlemincx. Inhalation/exhalation ratio modulates
the effect of slow breathing on heart rate variability and relaxation. Applied
psychophysiology and biofeedback, 39(3-4):171–180, 2014.

[40] Elke Vlemincx, Ilse Van Diest, Steven De Peuter, and Omer Van den Bergh.
Relaxatie: een ‘cold case’hervat. Psychologie en Gezondheid, jaargang 2007,
35(1):14–23, 2007.

[41] Kristin M Voegtline, Kathleen A Costigan, Heather A Pater, and Janet A
DiPietro. Near-term fetal response to maternal spoken voice. Infant Behavior
and Development, 36(4):526–533, 2013.



Investigating the Influence of Guided Imagery Relaxation on the Selected. . . 37

[42] PM West, EM Blumberg, and FW Ellis. An observed correlation between
psychological factors and growth rate of cancer in man. In Cancer Research,
volume 12, pages 306–307. AMER ASSOC CANCER RESEARCH PO BOX
11806, BIRMINGHAM, AL 35202, 1952.

[43] Mariusz Wirga and Michael DeBernardi. The abcs of cognition, emotion, and
action. Archives of Psychiatry and Psychotherapy, 4(1):5–16, 2002.

[44] Grzegorz M Wójcik, Andrzej Kawiak, Lukasz Kwasniewicz, Piotr Schneider,
and Jolanta Masiak. Azure machine learning tools efficiency in the electroen-
cephalographic signal p300 standard and target responses classification. Bio-
Algorithms and Med-Systems, 15(3), 2019.

[45] Grzegorz Marcin Wojcik, Joalnta Masiak, Andrzej Kawiak, Lukasz Kwas-
niewicz, Piotr Schneider, Nikodem Polak, and Anna Gajos-Balinska. Mapping
the human brain in frequency band analysis of brain cortex electroencephalo-
graphic activity for selected psychiatric disorders. Frontiers in Neuroinfor-
matics, 12:73, 2018.

[46] Grzegorz Marcin Wójcik, Joalnta Masiak, Andrzej Kawiak, Piotr Schneider,
Lukasz Kwasniewicz, Nikodem Polak, and Anna Gajos-Balinska. New protocol
for quantitative analysis of brain cortex electroencephalographic activity in
patients with psychiatric disorders. Frontiers in Neuroinformatics, 12:27, 2018.

[47] Grzegorz Marcin Wójcik, Jolanta Masiak, Andrzej Tadeusz Kawiak,
Lukasz Kamil Kwasniewicz, Piotr Schneider, Filip Postepski, and Anna Gajos-
Balinska. Analysis of decision-making process using methods of quantitative
electroencephalography and machine learning tools. Frontiers in Neuroinfor-
matics, 13:73, 2019.



6.2 Modeling of Brain Cortical Activity during Re-

laxation and Mental Workload Tasks Based on

EEG Signal Collection

76



4.52.7

Modeling of Brain Cortical Activity

during Relaxation and Mental

Workload Tasks Based on EEG

Signal Collection

Katarzyna Zemla, Grzegorz M. Wojcik, Filip Postepski, Krzysztof Wróbel, Andrzej Kawiak and

Grzegorz Sedek

Special Issue

Artificial Intelligence in Life Quality Technologies

Edited by

Prof. Dr. Piotr Prokopowicz, Prof. Dr. Katarzyna Węgrzyn-Wolska and Dr. Maciej Piechowiak

Article

https://doi.org/10.3390/app13074472

https://www.mdpi.com/journal/applsci
https://www.scopus.com/sourceid/21100829268
https://www.mdpi.com/journal/applsci/stats
https://www.mdpi.com/journal/applsci/special_issues/Artificial_ntelligence_Life_Quality_Technologies
https://www.mdpi.com
https://doi.org/10.3390/app13074472


Citation: Zemla, K.; Wojcik, G.M.;

Postepski, F.; Wróbel, K.; Kawiak, A.;

Sedek, G. Modeling of Brain Cortical

Activity during Relaxation and

Mental Workload Tasks Based on

EEG Signal Collection. Appl. Sci.

2023, 13, 4472. https://doi.org/

10.3390/app13074472

Academic Editors: Alexander N.

Pisarchik and Alexandros A.

Lavdas

Received: 12 January 2023

Revised: 24 March 2023

Accepted: 27 March 2023

Published: 31 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Modeling of Brain Cortical Activity during Relaxation and
Mental Workload Tasks Based on EEG Signal Collection

Katarzyna Zemla 1, Grzegorz M. Wojcik 2,* , Filip Postepski 2, Krzysztof Wróbel 2, Andrzej Kawiak 2

and Grzegorz Sedek 1

1 Institute of Psychology, SWPS University of Social Sciences and Humanities, 03-815 Warsaw, Poland
2 Department of Neuroinformatics and Biomedical Engineering, Institute of Computer Science,

Maria Curie-Sklodowska University, 20-033 Lublin, Poland

* Correspondence: gmwojcik@live.umcs.edu.pl; Tel.:+48-81-537-29-40

Abstract: Coronavirus disease 2019 (COVID-19) has caused everything from daily hassles, relation-

ship issues, and work pressures to health concerns and debilitating phobias. Relaxation techniques

are one example of the many methods used to address stress, and they have been investigated

for decades. In this study, we aimed to check whether there are differences in the brain cortical

activity of participants during relaxation or mental workload tasks, as observed using dense array

electroencephalography, and whether these differences can be modeled and then classified using a

machine learning classifier. In this study, guided imagery as a relaxation technique was used in a

randomized trial design. Two groups of thirty randomly selected participants underwent a guided

imagery session; other randomly selected participants performed a mental task. Participants were

recruited among male computer science students. During the guided imagery session, the electroen-

cephalographic activity of each student’s brain was recorded using a dense array amplifier. This

activity was compared with that of a group of another 30 computer science students who performed

a mental task. Power activity maps were generated for each participant, and examples are presented

and discussed to some extent. These types of maps cannot be easily interpreted by therapists due

to their complexity and the fact that they vary over time. However, the recorded signal can be

classified using general linear models. The classification results as well as a discussion of prospective

applications are presented.

Keywords: guided imagery; relaxation; EEG; GLM

1. Introduction

A handful of relaxation techniques are used to reduce stress, and they have been the
subject of scientific investigation for decades [1–3]. Relaxation techniques can be widely
used for stress reduction in the post-COVID-19 reality and may become one of the most
often used psychological or pharmacological therapies. Although the COVID-19 pandemic
has been associated with physical conditions, social, psychological, and economic conse-
quences are also being observed globally; changes to normal life may lead people to suffer
from a higher degree of mental health problems, including fear of infection, uncertainty,
stress, anxiety disorders, sleep problems, mood disorders, and suicidal ideation [4–6].

Many methods, including relaxation training [7–9], biofeedback [9], hypnosis [10,11],
and various forms of yoga meditation [12,13], have been successfully used to reduce
tension and anxiety. Guided imagery is one of the world’s oldest healing resources [14].
Interest in the practice of mental imagery and the role of imagination in health and well-
being has dramatically increased, as mental imagery has become a popular approach
for treating a wide variety of psychiatric and medical concerns and for enhancing sports
performance [15]. In medical and scientific research, guided imagery has been defined
by some researchers “as the internal experience of a perceptual event in the absence of

Appl. Sci. 2023, 13, 4472. https://doi.org/10.3390/app13074472 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13074472
https://doi.org/10.3390/app13074472
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4678-9874
https://doi.org/10.3390/app13074472
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13074472?type=check_update&version=1


Appl. Sci. 2023, 13, 4472 2 of 13

the actual external stimuli”, where imagery refers to the awareness of sensory (physical)
and perceptual (cognitive) experiences [16]. Some guided imagery is also referred to
as guided visualization [17,18]. Guided imagery (GI) is a cognitive, behavioral, mind–
body, evidence-based technique that is employed to manage pain, including cancer pain,
which affects and/or modifies the psychophysiological state of patients [19]. GI affects a
variety of systems, including the respiratory, cardiovascular, metabolic, and gastrointestinal
systems, and immune responsiveness. Psychoneuroendocrinoimmunology (PNEI) research
has demonstrated that the psychological response to GI can modulate the activity of the
hypothalamic–pituitary–adrenal axis, reducing the stress response and increasing the
feeling of well-being. Central and immune nervous system modulation through the release
of enkephalins, endorphins, cholecystokinin, and cortisol may be among the mechanisms
mediating these effects [20].

Meditation practices are associated with enhanced executive function and working
memory together with improvements in mental health condition severity (e.g., anxiety,
depression, and eating disorders [21–25]. Hudetz’s finding is that relaxation from 16 min of
guided imagery significantly increased post-test working memory performance in healthy
volunteers, and this improvement paralleled a significant reduction in the state–anxiety
scores as a result of relaxation training and EEG activity [26].

No findings other than Hudetz’s on guided imagery and brainwave activity have been
published, even though this is one of the oldest relaxation techniques, and many studies
have proven its positive impact during life-threatening disease treatment [27,28]. This
research is novel in this field as our main objective was to revise if quantitative modeling
can predict if and when participants enter a relaxation state, meaning alpha power increases
and beta power decreases, when exposed to guided imagery. Our original prediction
was that the pattern of brainwave activity reverses in comparison with that reported the
existing research on brainwave activity during stress response regulation [29,30]. Changes
in the EEG brainwave activity, specifically alpha power (8–13 Hz), are thought to decrease
because of the association of alpha power with relaxation, with an inverse relationship with
cognitive activity [31], whereas beta power (13–30 Hz) is thought to increase in response to
stress [32] due to its association with information processing and anxiety [33]. A number of
studies have confirmed this hypothesis: oscillatory changes in frontal alpha (decrease) and
beta (increase) power during or after applying stressors such as exam stress [34] and during
cognitive stressors such as the Stroop task [35]. In contrast, studies on relaxation techniques
such as meditation techniques have noted increased alpha power with the use of these
techniques [36–39]), which has been linked to improved cognitive performance [40,41].

In this research, we aimed to check if guided imagery (in comparison with a mental
workload task) could produce the predicted and observed changes in brainwave activities
(mainly an increase in alpha power and, to some extent, a reduction in beta power) as
observed using dense array electroencephalography, and whether such differences could
be modeled and then classified using a machine learning classifier. This study is innovative
because such pattern was found using a guided meditation technique but not (with the
exception of [42]) applying the relaxing technique of guided imagery.

With technological advances, new tools can provide computer-generated audio–visual
displays and produce immersion in digital 3D environments. The literature in this field is
expanding. In a study [43], the authors verified whether a VR-guided meditation experience
for patients with cancer would produce significant changes in EEG waveforms and whether
any changes would occur in the pain experienced during VR-guided mediation. This study
demonstrated the feasibility of using EEG recordings in exploring neurophysiological
changes in brain activity during VR-guided meditation and its effect on pain reduction.
Such modern brain imaging techniques are valuable as they provide data for the verifi-
cation of the computational models focusing on understanding the relationship between
cognition and the brain [44]. Eduardo Perez-Valero created a stress level classification
via electroencephalography (EEG) and machine learning on twenty-three volunteers [45].
Participants were subjected to stressful interactions alternating with phases where they
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were able to relax. After quantitative assessment of the stress level through individual-
ized regression algorithms, the researchers developed stress classifiers that indicated that
regression models could quantitatively predict stress levels with noteworthy performance.

In this study, we wanted to verify whether obtaining such quantitative prediction but
on relaxation level is possible. Therefore, the two main objectives of the study were: to
record and visualize the brain cortical activity of subcohorts exposed to guided imagery
relaxation and mental tasks and to train a general linearized model (GLM) classifier to
classify the recorded signal into one of the two classes: relaxation or mental workload.
Such a classifier might allow high-probability identification of when a patient is in a state
of relaxation, which will provide the opportunity to create computer-based devices that
can help with anxiety and stress reduction.

For this study, 60 computer science students at Maria Curie-Sklodowska University in
Lublin, were recruited for a randomized trial. Half of the randomly selected students were
exposed to relaxation, as recorded by an experienced trainee in guided imagery, whereas
the remaining students solved mental tasks.

In this paper, we show that it is possible to build a general linear model that can
be used to accurately distinguish the state of a participant’s brain. Although the GLM is
a commonly known classifier, its application to EEG signal analysis is uncommon. The
novelty of this study is the evidence of the possibility of classifying two mental states using
EEG signal classification and a GLM, which, in the future, may lead to the construction of
new therapy-oriented brain–computer interfaces.

2. Materials and Methods

2.1. Cohort Recruitment

We recruited 60 participants from among computer science students at Maria Curie-
Sklodowska University in Lublin.

They were 60 right-handed men aged from 17 to 24 years; the average age was 20.38
with a standard deviation of 1.52.

The experimental cohort consisted of two subcohorts:

• A: 30 subjects who were exposed to relaxation.
• B: 30 subjects who were asked to perform a mental task.

2.2. Inclusion and Exclusion Criteria

To ensure the repeatability of the study, we defined the inclusion and exclusion criteria
as follows.

2.2.1. Inclusion Criteria

The age of participants should be in the range of 17–24, as this was the typical age
of the computer science students at the university where the experiment was conducted.
They should be short-haired, right-handed men, because long hair hinders the recording of
signals without noise. The number of women studying computer science was still low, so
building a balanced cohort including an equal number of left-handed and right-handed
men and women for the experiment would have been difficult. In addition, most of the
women studying computer science had long hair. Notably, differences have been reported
in electroencephalograms between men and women [46,47], and we wanted to have a
relatively equal cohort response.

We also assumed that, due to lateralization, handedness may play a significant role in
classification. All students selected for the cohort were white men of Polish nationality or
citizenship, fluently speaking Polish.

Another inclusion criterion was being healthy; not using prescribed medication, soft
drugs, or hard drugs; with no medical treatment history in the one year following the
study; and with no chronic diseases, including chronic fatigue syndrome, cancer, or any
other diseases or mental disorders. Participants had to have the ability to attend study
appointments with no technological requirements.
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The participants were nonsmokers and asked not to consume alcohol or any medica-
tions at least 72 h before participation in the experiment.

2.2.2. Exclusion Criteria

Mean younger than 17 or older than 24 years, left-handed, or with long-hair and
all women were automatically excluded from the cohort recruitment process due to the
reasons explained above.

Participants that did not fluently speak the Polish language were excluded from the
cohort because the GI session was recorded in Polish and mental tasks were formulated
in Polish. To replicate the study, we suggest choosing the same language for GI sessions,
mental tasks, and cohort members.

Candidates even nonseriously ill (flew, cold, running nose, etc.) were excluded from
the cohort recruitment process.

Candidates taking prescribed medications, soft drugs, or hard drugs were excluded
from the cohort recruitment process.

Candidates with a medical treatment history in one year following the study or with
chronic diseases, including chronic fatigue syndrome, cancer, or any other diseases or
mental disorders diagnosed were excluded from the cohort recruitment process.

Candidates who could not attend study appointments could not be included in the cohort.

2.3. Information for Participants

Before participating in the study, participants received information about EEG re-
search and technology and their role in the project. Then, they signed the agreement
for participation.

They also filled and signed the declaration fulfilling the requirements of inclusion and
exclusion criteria in an attempt to determine that none of our participants suffered from
chronic diseases. The participants were asked to declare serious diseases such as chronic
fatigue syndrome, cancer, and all other chronic diseases, including mental disorders. If
they declared so, they were automatically excluded from the cohort.

2.4. EEG Recordings

All EEG recordings were obtained using a 256-channel dense-array EEG amplifier with
a HydroCel GSN (geodesic sensor net) 130 manufactured by Electrical Geodesic Systems
(EGI) (500 East 4th Ave. Suite 100, Eugene, OR 97401, USA), and the sampling frequency
was 250 Hz. The amplifier worked with Net Station 4.5.4 and SmartEye 5.9.7 software
for gaze calibration and eye-blinking or saccadic artifact removal. The laboratory was
also equipped with a geodesic photogrammetry system (GPS), which was operated using
Net Local 1.00.00 and GeoSource 2.0. The event-related potential (ERP) experiments were
designed in PST e-Prime 2.0.8.90.

2.5. Deep State of Relaxation

During relaxation, each participant sat in a comfortable armchair with earphones on
his head, and the relaxation procedure was played through the earphones from the record.
The record was prepared by a trained expert, which is the typical method used in guided
imagery (GI) [48–50]. Guided imagery is a relaxation technique that involves dwelling on a
positive mental image or scene. The length of the record was 21 min and 7 s; however, for
this research, the first 21 min were taken into consideration. It was assumed that sooner or
later, each member of this subcohort would be relaxed enough to manifest brain cortical
activity that could be classified.

2.6. Mental Task

During the mental task, participants were asked to recall facts from memory as much
as possible. These facts included the capitals of European countries, zodiac signs, and the
states of the United States of America. The participants were told that they would be asked
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to write these answers down after the experiment and that their reward was dependent on
the results. We assumed that such a task would require some mental effort, leading to a
high level of mental workload.

2.7. Preprocessing Pipeline

The collected signal was preprocessed using the following procedures and parameters
set on Net Station software: filtration with 1 Hz high-pass and 45 Hz low-pass filters. Then,
the standards for Net Station interpolation and noisy channel removing algorithms were
applied as well as automatic and, in some cases, manual artifact removal. Then, the signal
was divided into 1 s epochs, and noisy epochs were removed in Net Station using the
AutoReject toolbox. See Figure 1.

Figure 1. Data analysis pipeline for the experiments. For details, see the text.

3. Results

Examples of 3-min time interval plots are presented in Figure 2 for a selected student
in subcohort A, who experienced GI relaxation, and in Figure 3 for a student in subcohort B,
who performed the mental workload task. These maps, however, are too similar and cannot
be easily interpreted using the naked eye. For example, in Figure 2 (state of relaxation), we
can see increased activity in the β band, and in Figure 3, considerably α-band activity can
be observed. However, Figures 2 and 3 present particular student cases and a specific 3-min
time interval from a 21 min recording of brain cortical activity. As expected, plots such as
those in Figures 2 and 3 change over time, and quickly analyzing them would be difficult.
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Nevertheless, differences in activity are visible, even though they are not easily interpretable.
An appropriately trained machine learning classifier can be used for this task.

Figure 2. Power activity in the δ, θ, α, and β bands for participant s299392 exposed to guided imagery.

Each row, one-by-one, represents a 3-min slot, for 21-min in total. For details, see the text.

Machine Learning Data Analysis

The signal was classified using generalized linear models (GLMs) using the imple-
mentation included in the h2o library available for Python. Model tests based on different
time windows were conducted in Python version 3.7.5.

The quality of the classification was tested for the same time intervals in the two
data groups.

Group A: Signals with less than 10% erroneous epochs; Group B: all signals included
in the dataset (60 signals). According to the documentation of the h2o library, using
generalized linear models, balanced data were not required.

In the case of Group B, the signals removed due in noisy epochs were interpolated by
the library mentioned above.
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Figure 3. Power activity in the δ, θ, α, and β bands for participant s303840 exposed to mental task.

Each row, one-by-one, represents a 3-min slot, for 21-min in total. For details, see the text.

The training and validating sets were divided into proportions of 80% and 20%,
respectively.

Table 1 shows the results of the GLM classifier for Group A. The 3 s long time intervals
were investigated around the 5th, 10th, 13th, 14th, and 15th minutes. The choice of these
probing times was arbitrary based on the experience of the GI relaxation therapist.

The results of the GLM classifier for Group B are shown in Table 2, where a 60 s time
interval was chosen because we suspected that the signals were of worse quality in this
group. The probing was investigated around the 5th, 10th, 13th, 14th, and 15th minutes
and the following 1 min after each probe.

Table 3 shows the results of the GLM classifier for Group B, and the whole 20-min
signal recordings were classified without any signal probing.

In Figure 4, the ROC curve for the GLM applied to Group B using the full-length
20-min signal recordings is presented. The set of statistical characteristics for this case are
presented as follows: For the training set: MSE: 0.0634, RMSE: 0.2518, LogLoss: 0.2021,
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AUC: 0.9748, AUCPR: 0.9834; For validation set: MSE: 0.05227, RMSE: 0.2286, LogLoss:
0.1676, AUC: 0.9823, and AUCPR: 0.9877.

Table 1. GLM classifier results for Group A: all signals and 3 s time intervals.

Group dT (s)
ACC
Train

F1 Train
AUC
Train

ACC
Valid

F1 Valid
AUC
Valid

A 299–301 0.6559 0.7165 0.7255 0.6252 0.7027 0.6808

A 599–601 0.6578 0.7156 0.7291 0.6401 0.7051 0.7006

A 779–781 0.6853 0.7326 0.7672 0.6693 0.7279 0.7451

A 839–841 0.6842 0.7336 0.7663 0.6629 0.7221 0.7355

A 899–901 0.6660 0.7177 0.7441 0.6506 0.7167 0.7252

Table 2. GLM classifier results for Group B: all signals and 60 s time intervals.

Group dT (s)
ACC
Train

F1 Train
AUC
Train

ACC
Valid

F1 Valid
AUC
Valid

B 299–359 0.7785 0.8337 0.8620 0.7804 0.8360 0.8602

B 599–659 0.7884 0.8407 0.8678 0.7955 0.8478 0.8727

B 779–839 0.8097 0.8532 0.8926 0.8113 0.8578 0.8929

B 839–899 0.7830 0.8367 0.8628 0.7827 0.8409 0.8631

B 899–959 0.7812 0.8345 0.8634 0.7839 0.8410 0.8625

Table 3. GLM classifier results for Group B: all signals and full signal length.

Group dT (s)
ACC
Train

F1 Train
AUC
Train

ACC
Valid

F1 Valid
AUC
Valid

B 1–1200 0.9258 0.9370 0.9822 0.9077 0.9238 0.9748

Figure 4. The ROC curve for the results presented in Table 3.

Table 1 shows that the best results, with approximately 68% accuracy, were achieved
near the 13th and 14th minutes using the GLM classifier. A 3 s time interval was sufficient
for analyzing and estimating the state of the brain during the time in which it was recorded.

Figures 5 and 6 show topographical maps of participants from Figures 2 and 3 for five
frequency bands of the time window where the classifier was performing best.
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Figure 5. Power activity in the δ, θ, α, and β bands for participant s299392 exposed to guided imagery.

Figure 6. Power activity in the δ, θ, α, and β bands for participant s303840 exposed to the mental task.

4. Discussion

4.1. Signal Classification

According to our experience and expectations, most of the patients were sufficiently
relaxed in the 14th minute. The best results of the classifier at this time confirmed our
expectations, to some extent. To examine the hypotheses about the substantial increase
in alpha power and decrease in beta (to some extent) power in the estimated phase of
deepest relaxation, we carried out the two one-way ANOVAs comparing the individual
scores in brainwaves between group conditions (guided imagery or mental task) during
the time phase of 14 min. We found predicted, significant effect of group (F (1, 53) = 4.01,
p = 0.05, p2 = 0.070), indicating that the alpha power in the guided imagery group (M = 0.24,
SD = 0.14) was significantly higher than that in the mental task group (M = 0.17, SD = 0.12).
However, we found no significant effect of group for beta power scores (F (1, 53) = 0.53,
p = 0.47, p2 = 0.010), and beta power in the guided imagery group (M = 0.08, SD = 0.03) was
very similar to that in the mental task group (M = 0.07, SD = 0.03). However, only the best
signal (with less than 10% excluded epochs) was considered. Table 1 presents the GLM
results obtained for both the training set and validation set, and the values of the obtained
parameters confirmed the classifier’s high level of stability in the considered time range.

As an accuracy of 68% was achieved by the classifier when using a 3 s time interval,
we wondered if inputting more signal would increase the efficiency. The answer to this was
yes, and in Table 2, the results with respect to classifier efficiency for 1-min-long intervals
of time are shown. After 13 min, the efficiency of the GLM increased to 78%, which is a
satisfactory result, especially because, in this case, we took all the signals recorded instead
of the best ones. Notably, poor epochs were interpolated by the software and used for
analysis, as described in the Methods section. Similarly, Table 2 presents the GLM results
obtained on both the training and validation sets, and the values of the obtained parameters
indicate the classifier’s high level of stability in the discussed time range.

Table 3 presents the results obtained for the GLM classifier for all collected signals in
the whole 20-min-long time range. An accuracy of approximately 92% with a similar F1
score proved its high efficiency for the whole collection of data, both on the training and
validation sets. Th ROC curve presented in Figure 4 confirms its stability.

The software libraries discussed in the Methods section provided us with overtraining
and data leakage incidents.
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The aim of this study was to check whether machine learning can be used to classify
the state of the participant’s brain and distinguish engaging in deep GI relaxation from
performing a mental task. The results presented herein confirm this possibility.

The other conclusion that can be derived from this study is that the more signal (or
the longer signal) the classifier obtains, the higher the accuracy.

4.2. Future Research

This study is part of the initial stage of our project.
Depending on personal characteristics and external influence, each patient has their

own ability to enter into relaxation, which varies with respect to time and other conditions.
In the future, the pace at which particular subjects enter a deep state of relaxation.

should be investigated. We expected that this could be achieved in approximately 14 min.
However, each individual can be characterized by their own pace. Plotting the state as a
function of time would be recommended.

The use of machine learning classifiers is expected to be applied in the classification of
biomedical signals at therapy support sites [51,52]. Machine learning tools and algorithms
have also been used for decades for the diagnosis of many disorders, such as alcoholism or
depression [53,54], among others [55], using new measures such as those defined in [56],
as well as advanced modeling of biological system behavior [57–60], including diagnostic
purposes [61–63].

Our findings are useful for the construction of brain–computer interfaces (BCIs) that
have been known for half a century [64,65] and can support therapists in running GI
relaxation sessions. In the next step, we can imagine AI-trained robotic therapists that are
able to instantaneously treat their patients at an appropriate pace based on EEG recordings
and classifiers applied. Although BCIs have been known for such a long time, some ethical
dilemmas may arise when using them [66], especially with children [67]. Thus, another
interesting aspect is the investigation of the characteristics of the deep state of relaxation
inclination as a function of psychological personality predictors.

In the future, patients provided with simple EEG equipment will be able to use it
during relaxation to support a trainee during brain monitoring. This type of approach
could increase the effectiveness of therapy, and the study presented here can be the first
step toward achieving this goal.

Another aspect leading to the possible application of this finding, especially when
considering therapist support, is the design of tools that can be used to instantaneously
process the collected data. Although the use of 256 electrodes can be too power-consuming,
in practical applications, fewer electrodes may be sufficient. The data analysis pipeline
may also consist of an Apache Spark Streaming-based engine, such as in [68], which, due
to in-memory processing and the Python interface, seems to be a suitable candidate for
pipeline implementation.

This will, however, require the analysis of several additional tests. After meditation vs.
control manipulation, we examined the effectiveness of attentional processes (accuracy and
reaction time) using three classical tests: the antisaccade test, Stroop test, and go/no-go test.
They did not affect the EEG recordings, but their analysis was not the goal of this study.
This type of approach will broaden our knowledge concerning relaxation interventions and
will be reported in future papers.
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Abstract: The aim of this study was to investigate the potential impact of guided imagery (GI)

on attentional control and cognitive performance and to explore the relationship between guided

imagery, stress reduction, alpha brainwave activity, and attentional control using common cog-

nitive performance tests. Executive function was assessed through the use of attentional control

tests, including the anti-saccade, Stroop, and Go/No-go tasks. Participants underwent a guided

imagery session while their brainwave activity was measured, followed by attentional control tests.

The study’s outcomes provide fresh insights into the influence of guided imagery on brain wave

activity, particularly in terms of attentional control. The findings suggest that guided imagery has the

potential to enhance attentional control by augmenting the alpha power and reducing stress levels.

Given the limited existing research on the specific impact of guided imagery on attention control, the

study’s findings carry notable significance.

Keywords: guided imagery; relaxation; stress reduction; cognitive performance; EEG; GLM

1. Exploring the Impact of Relaxation Techniques on Brain Wave Activity and
Attentional Performance: A Review of Relevant Research

Improving attention and executive functions is of great importance in our current
world due to the complex and demanding nature of daily tasks and the challenges posed
by our modern reality. Scientific research has shown that attention and executive functions
play crucial roles in various aspects of cognitive processing and goal-directed behavior [1].
Attention is the cognitive process that allows us to selectively focus on relevant information
while filtering out irrelevant stimuli [2]. It is essential for tasks that require concentration,
information processing, and decision making. In our information-rich environment, where
we are constantly bombarded with stimuli and distractions, the ability to maintain focused
attention is vital for productivity and task performance. Scientific studies have consistently
demonstrated the positive impact of enhanced attention and executive function on various
aspects of individuals’ lives [3]. Improved attentional control and executive function have
been associated with a better academic performance [4–6] and job performance [7] and
professional success. Additionally, they contribute to effective decision making, problem
solving, and conflict resolution. Hence, improving attention and executive functions is
vital in our current world, given the cognitive demands and challenges we face, ultimately
benefiting individuals and society as a whole in wide range of EEG experiments designed
to quantitatively measure cognitive functions like those in [8]. In recent years, there has
been a growing interest in studying the effects of meditation and relaxation techniques
on attentional control processes. Tang [9] conducted a study that demonstrated how
just five days of mindfulness meditation training improved attentional control in healthy
young adults. Similarly, Zeidan [10] found that brief mindfulness meditation training
improved executive attentional control abilities and reduced anxiety. Furthermore, Ruedy
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and Schweitzer [11] found that a brief period of relaxation exercises enhanced participants’
ability to resist distractions and maintain focus on a cognitive task. Several reviews
have also analyzed the impact of meditation on cognitive functions, including attention,
memory, and executive control. For instance, Chiesa and Serretti [12] examined the effects
of mindfulness meditation on attentional control and found that it led to improvements
in both selective and sustained attention. Many studies in cognitive psychology and
neuroscience have explored the positive impact of mindfulness and meditation training on
cognitive functions. These studies have utilized a wide range of tasks to assess measures of
response accuracy, response time, and associated electrophysiological and neuroimaging
patterns, highlighting the positive impact of mindfulness and meditation on cognitive
performance [9,13–17].

Despite being recognized as a healing resource for centuries [18], the potential impact
of guided imagery (GI) on cognitive performance remains largely unexplored. In recent
years, there has been increased interest in the role of GI in health and well-being [19].
GI has also been found to be effective in enhancing sports performance [20]. In the late
1970s, health professionals reported using imagery for altering the course of life-threatening
diseases [21,22]. Studies have shown that GI can reduce psychological stress and smok-
ing behaviors among smokers and ex-smokers [23], and can facilitate improved health
behaviors and reduce psychological distress in the workplace [23]. GI involves external
instructional guidance to allow the internal generation of images [24], and it is defined as
the mental process that employs the senses of sight, hearing, smell, and taste. Sensations of
motion, position, and contact are experienced by GI practitioners [25]. GI has wide-ranging
relevance and applicability, and is effective in reducing test anxiety [26], coping with
stress [27–35], and improving problem-solving abilities [36].

Given the evidence of both anxiety reductions and immune system enhancements,
GI has not been studied during brain behavior and brainwave changes while patients are
conducting GI sessions. However, the ever-growing neuroscience literature relating to
the phenomena of mindfulness sessions is trying to incorporate EEG quantitative mea-
surements to describe brain wave changes during mindfulness sessions [37]. For example,
in the research led by Peta Stapleton, the brainwave data of a group of 468 meditation
novices with limited previous exposure to forms of guided meditation were recorded, and
researchers observed a global increase of 16% (95% HDI = [0.13, 0.19]) in alpha power due
to meditation [38]. A range of mindfulness-based techniques has been created to reduce
stress and enhance the quality of life [39]. Meditation is a complex conscious cognitive
process requiring concentration and receptive attention [9,40]. Meditation practices are also
associated with enhanced executive function and working memory [41–45]. However, little
research has provided an electrophysiological examination of the meditative experience in
people with limited meditation experience, particularly from a GI perspective. However, it
is known that alpha activity in EEG signals during meditation is a form of brain integration
that leads to higher-level cognitive processes [46]. Researchers hypothesized that the transi-
tion from beta brainwaves (high, medium, and low range) to alpha brainwaves could take
place relatively quickly [38]. This result is consistent with the findings of a study in which
participants achieved proficiency in the attentional training aspect of meditation practice
relatively swiftly [47]. An increase in alpha wave levels indicates that the participants are
in a relaxed mood or their mood is enhanced [48]. Under stress, the alpha brain waves
tend to decrease, which can indicate a state of heightened arousal and anxiety. The alpha
frequency is also positively correlated with the speed of processing information [49]. On
the other hand, the beta wave power indicates that humans are in an alert condition [50].
An increased beta activity can interfere with the ability to relax and can make it difficult to
focus attention on a single task. Research has shown that stress can interfere with attention
control by reducing our ability to filter out distractions and interfering with our ability
to shift our focus from one task to another [51]. Zoefel proved [52] that an increase in
EEG alpha wave activity is linked to an improvement in cognitive performance. Cognitive
control (CC) and executive function (EF) are defined in relation to goal-directed behavior
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versus habits and controlled versus autonomic processing, as well as the functions of the
prefrontal cortex (PFC) and associated regions and networks [53]. Executive functions (EFs)
consist of a family of three, interrelated core skills: (1) inhibition or active suppression
of stimuli and automatic responses that are irrelevant to the task at hand, (2) updating
and monitoring of information in the working memory to include only the most relevant
material, and (3) shifting or switching attention between multiple mental representations
or operations [54].

Anti-saccade, Stroop, and Go/no-go tasks are three commonly used tests to assess
executive function, which refers to a set of cognitive processes involved in goal-directed
behaviors [55]. These tasks have been extensively studied and validated, allowing for
meaningful comparisons across different studies and populations [56]. Although all three
tests are measures of executive function, they differ in their specific cognitive demands
and the underlying processes they assess. Anti-saccade tasks assess inhibitory control and
attentional control [54,57], Stroop tasks assess selective attention and inhibition of irrelevant
information, and Go/No-go tasks assess response inhibition and working memory [58].
It was proven that acute psychosocial stress may affect executive action control in a Go/No-
go task [51].

No research was found on attentional tasks after GI sessions. However, it is known
that other relaxation techniques such as meditation can reduce interference during the
Stroop task [59], and meditators have better attentional performance in the Stroop task
compared with a meditation-naïve control group [60]. High proficiency in this task indi-
cates good attentional control and relatively low automaticity or impulsivity of one’s
responses [13]. The study titled “Mindfulness-of-breathing exercise and its effect on
EEG alpha activity during cognitive performance in an attentional Stroop task” inves-
tigates the relationship between a mindfulness-of-breathing exercise and EEG alpha ac-
tivity during cognitive performance, specifically in the context of an attentional Stroop
task [61]. The study results showed a significant increase in alpha power during the inter-
vention among the mindfulness-of-breathing exercise group compared to the control group.
The mindfulness-of-breathing exercise group also demonstrated a trend toward enhanced
performance in the Stroop attentional blink task after the intervention. The authors sug-
gest that the increased alpha power may potentially facilitate cognitive performance [61].
Another study “Short Term Integrative Meditation Improves Resting Alpha Activity and
Stroop Performance” [62] provides evidence that a short-term integrative meditation pro-
gram can improve the resting alpha activity and cognitive performance in the Stroop
task. Another commonly used measure of cognitive inhibition is the anti-saccade (AS)
task, which requires suppression of a visually guided saccade toward a target and the
generation of voluntary saccades in the opposite direction. In was concluded in [57,63]
that more accurate and more consistent AS performances were present in meditators in
comparison to the non-meditators group. Go/No-go tasks can provide objective evidence
of attention lapses in the form of target omission errors and response time variability.
In [64], the authors reported that mindfulness is related to errors on Go/No-go tasks with
high self-reported mindfulness scores are related to more accurate responses [60,65–68].
Inhibition, shifting, and updating are core abilities that support a mindful state and are
facilitated via regular meditation [69]. For example, inhibition of unrelated mental repre-
sentations and reactions is required to maintain a mindful state, with inhibitory control
increasing once a mindful state is achieved via implicational intentions (e.g., if the mind is
wandering, then disengage and refocus attention). Shifting is necessary to mentally clear
distractions and unrelated representations back to the present-moment experience. Finally,
updating the working memory is required to continually stay focused on an ever-changing
present moment [70].

However, there is no research on GI and its impact on the results of attention tests.
Only [71,72] verified and proved that relaxation induced by GI significantly enhanced work-
ing memory performance, but there is no other research on the topic that this
research investigates.
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2. The Potential Benefits of Guided Imagery for Executive Function and Attentional
Control and Research Hypotheses

Guided imagery offers a distinct experiential approach to mindfulness and men-
tal well-being. Although meditation primarily focuses on cultivating present-moment
awareness and detachment from thoughts, guided imagery involves actively engaging the
imagination to create vivid sensory experiences. This approach can be particularly helpful
for individuals who find it challenging to quieten the mind or those who benefit from more
structured practices. A further exploration of guided imagery is interesting as it broadens
our understanding of mindfulness, offers customization, and provides a complementary
practice to enhance mental health.

Overall, mindful meditation and GI practices can be effective for improving attention
control and cognitive performance; however, the specific benefits and mechanisms of action
differ depending on the practice. Mindfulness meditation develops greater awareness
and control over the mind [73] and GI promotes positive emotions and reduces stress
and anxiety, whereas anxiety impairs the cognitive performance by increasing cognitive
interference [74]. Effective stress management strategies, such as relaxation techniques, may
be helpful in mitigating the negative effects of stress on attention and cognitive functions.
Attentional control theory posits that for goal-directed behavior to occur, attentional control
is necessary, involving inhibiting competing demands to concentrate on the current task
and being able to switch or shift attention as necessary [75]. Attentional control theory
specifies that deficits in these aspects of attentional control are central to the development
and maintenance of anxiety [75]. In support of this assumption, a recent meta-analysis
of 58 studies testing the association between measures of attentional control and anxiety
found that participants with high anxiety showed a deficit in attentional control compared
to participants with low anxiety [76].

The main research hypothesis of this study was that a short-term GI session would
reduce stress levels in healthy male participants without prior experience with such sessions
or a history of chronic medical conditions. To test this hypothesis, 30 participants were
randomly selected to undergo a GI session, and the effectiveness of the session in reducing
stress was assessed through monitoring beta power reductions and alpha state increases
using EEG data recordings and self-reported questionnaires.

In addition to evaluating the effectiveness of the GI session, this study aimed to
investigate whether the results of attentional tasks (Stroop, Go/No-go, and anti-saccades
tests) could differentiate between the group of participants who underwent the GI session
and another group of 30 randomly selected male participants who completed a mental
task. Specifically, the number of errors made on these tasks between the two groups
was compared.

Furthermore, the study hypothesized that changes in alpha power might mediate the
relationship between the utilization of GI and the decrease in errors on the Stroop and
anti-saccade tests. To test this hypothesis, a mediation analysis was conducted to explore
the possible relationship between these variables.

3. Materials and Methods

3.1. Materials

Before the experiment, the participants were required to sign a consent form con-
firming their willingness to participate. The participants were also required to fill in their
personal information and answer several questionnaires as outlined below:

1. Scales of Helplessness and Anxiety of Contracting an Infectious Disease by Ry-
dzewska, K. and Sędek, G. 2020 unpublished research materials from SWPS University
of Social Sciences and Humanities. These measures were used to indicate the potential
role of high levels of maladaptive emotions in impeding rational decision making
during the pandemic.

2. The State-Trait Anxiety Inventory (STAI) is a self-reporting questionnaire designed
to measure anxiety in adults. The STAI questionnaire is often used in medical and



Sensors 2023, 23, 6210 5 of 19

research settings to help identify people who may need treatment for anxiety [77].
It can also help to measure the effectiveness of treatments designed to reduce anxiety.

3. Following both the GI and mental task sessions, participants underwent attentional
tests to test the hypothesis that GI can enhance attentional control.
The anti-saccade test—attention control was designed according to the recommenda-
tions of the Antoniades protocol. In prosaccade trials, the object appears at the location
of the cue, so the discrimination of stimuli is relatively easy. The primary indicator in
this task is the average percentage of correct responses for the anti-saccade blocks.
The numerical Stroop Test is a variation of the classic Stroop test that uses numbers
instead of words. The test is designed to create interference between the automatic
response of reading the digits and the task of counting them, which requires more cog-
nitive effort. The test measures the ability to suppress automatic responses (response
inhibition) and focus attention on the task at hand [78].
The main indicator in this test is the average percentage of correct answers.
Go/no-go tasks require participants to respond to one type of stimulus (the “go”
stimulus) but inhibit their response to another type of stimulus (the “no-go” stimulus).
This task assesses the ability to inhibit automatic responses and cognitive flexibility,
as well as response inhibition and working memory [58]. The tasks in the main block
were arranged in a pseudorandomized order while following the rule that No-go
trials were preceded by two or five Go trials. The main block of trials was preceded by
ten practice trials, consisting of two No-go and eight Go trials. As a primary measure
of Go/No-go task performance, the attention control was the percentage of correct
responses to Go trials after No-go trials.

4. Furthermore, both prior to and following the GI and mental task sessions, the study
participants were given questionnaires developed by the research team.
These questionnaires encompassed various measures, including participants’ self-
reported levels of stress and relaxation on a 10-point scale, and enabled the iden-
tification of emotions experienced by the participants before and after the GI and
mental tasks.

The experimental group underwent a recorded GI session, in which participants
were provided with a series of instructions to visualize a calming and peaceful scenario.
The session began with simple breathing exercises and progressive muscle relaxation
techniques. The mental task group listened to a pre-recorded session consisting of mental
tasks that involved recalling the names of voivodeships in Poland, zodiac signs, and other
similar tasks. The inclusion of a mental task in the second group, rather than a resting
state condition, was designed to simulate the experience of stress. Stress is known to elicit
negative thoughts and worry, leading to cognitive rumination [79]. This repetitive thinking
about stressors, problems, or potential threats can be mentally exhausting and hinders the
ability to achieve a state of relaxation. The cognitive load associated with stress-related
thoughts keeps the mind engaged, making it difficult to enter a restful state. Therefore,
the use of a mental task was aimed to replicate the cognitive demands and stress-related
cognitive processes often experienced in real-life stressful situations.

Both experimental groups, including the guided imagery group and the mental task
group, were subjected to identical conditions, which involved listening to pre-recorded
instructions for the same duration. Furthermore, each experimental session was supervised
by two trained technicians who diligently attended to technical aspects, ensuring proper
electrode placement and functioning, including the playback of the recordings.

To determine whether participants in the guided imagery and mental task group
were actively engaged in the experiment and not sleeping, researchers employed several
strategies to minimize the likelihood of participants falling asleep during the session sum-
marized in the following. Monitoring: Researchers were present during the session and
monitored participants during the guided imagery session and mental task session. This
allowed to visually confirm whether participants remained awake and actively participated
throughout the session. Instructions: Clear instructions were provided to participants
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before the guided imagery session and mental tasks session, emphasizing the importance
of staying awake and engaged. Post-session debriefing: After the guided imagery session
and mental task session, researchers conducted a debriefing via a survey with participants
to ask about their experience and level of engagement. These measures, combined with the
researchers’ direct observations and vigilance, can provide valuable evidence to ascertain
whether participants in the guided imagery group remained awake and actively partici-
pated in the experiment. However, it is important to note that despite these efforts, it is
challenging to completely eliminate the possibility of some participants unintentionally
falling asleep during a session. However, the study conducted by Yaxin Fan “Short Term
Integrative Meditation Improves Resting Alpha Activity and Stroop Performance” [62]
provides evidence that, in contrast to the significant changes observed in the meditation
training group, no significant alterations in alpha power or performance on attention tasks
are observed even during a resting state in the control group.

3.2. Experimental Facilities

The EEG Laboratory located within the Department of Neuroinformatics and Biomed-
ical Engineering is equipped with a dense array amplifier that can capture brain electrical
activity at a frequency of 500 Hz using a 256-channel HydroCel GSN 130 Geodesic Sensor
Net. This complete and compatible system is manufactured by Electrical Geodesic Sys-
tems, and it utilizes a Geodesic Photogrammetry System (GPS), which uses 11 cameras
placed in its corners to create a model of the subject’s brain based on its size, proportion,
and shape. This system is able to accurately superimpose computed activity results onto
the brain model. The amplifier works in conjunction with the Net Station 4.5.4 software,
while the GPS is controlled by Net Local 1.00.00 and GeoSource 2.0. Eye tracking was
achieved through the use of a SmartEye 5.9.7 system, which allows for gaze calibration and
the elimination of eye blinks and saccades. PST e-Prime 2.0.8.90 was used to design the
ERP experiments.

3.3. The Cohort

The Bioethical Commission of Maria Curie-Sklodowska University in Lublin, Poland,
granted permission for all the experiments described below. During the relaxation exper-
iment, each participant in the cohort sat in a comfortable armchair with earphones and
listened to a recording of a relaxation procedure. The recording was prepared by a trained
expert using a typical method of GI, which as explained above in detail is a relaxation
technique that involves focusing on a positive mental image or scene. The recording was
21 min and 7 s long, but for this research, only the first 20 min were considered. It was
assumed that each member of the sub-cohort would eventually become relaxed enough to
manifest brain cortical activity that could be classified.

We utilized our dense array amplifier to capture the signals across all 256 electrodes.
However, considering our prior expertise [80–82] in analyzing cognitive processing EEG sig-
nals, we anticipated detecting variations specifically ion the designated cognitive electrodes.
These electrodes are designated as optimal for observing cognitive activity according to the
EGI 256-channel cap specifications. They were strategically positioned across the scalp, and
they are sequentially numbered as follows: E98, E99, E100, E101, E108, E109, E110, E116,
E117, E118, E119, E124, E125, E126, E127, E128, E129, E137, E138, E139, E140, E141, E149,
E150, E151, and E152. The topographical map of these electrodes as places on the scalp can
be found in Figure 1 in the EGI documentation [83,84].

The research protocol for both types of sessions is presented in Figure 1.
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Figure 1. Research protocol used for data processing of both types of sessions: GI and mental

task workloads.

After the signal was recorded, we exposed it to low and high pass filtering, removed
artefacts, and continued with the so-called interpolation of electrodes. Next, the signal was
divided into 1 min long segments and Fourier transforms were applied to the calculation
of the power spectrum densities (PSDs) to be averaged over this 1 min long time interval.
Next, the data were divided into training and testing sets (80%/20%) and the classifier
worked on the signals that it has never seen before.

During the mental task experiment, participants were asked to recall as many Euro-
pean country capitals, zodiac signs, and United States states from memory as possible.
They were told that they would be asked to write down their responses after the experiment
and that their reward depended on the results. It was assumed that this task would require
mental effort, leading to a high level of mental workload and a stressful situation.

Initially, 60 participants were recruited from the students of Computer Science at
Maria Curie-Sklodowska University in Lublin. These were all right-handed males aged
17 to 24, with an average age of 20.38 and a standard deviation of 1.52. Only men were
chosen for the experiment because mainly male students of Computer Science attend the
University where the research was conducted, and differences in electroencephalograms
between men and women have been reported [85,86]. This was done to achieve a relatively
equal cohort response.

It was ensured that the participants did not suffer from chronic diseases. They were
asked to declare any serious diseases such as chronic fatigue syndrome, cancer, and other
chronic diseases, including mental disorders, and if they did, they were automatically
excluded from the cohort. The experimental cohort was divided into two sub-cohorts:
A consisted of 30 subjects exposed to relaxation, and B consisted of 30 subjects asked to
perform the mental task.

3.4. Inclusion and Exclusion Criteria

The inclusion criteria for the cohort in this experiment include being a short-haired,
right-handed, healthy, Polish-speaking male between the ages of 17 and 24, with no history
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of chronic diseases, no current use of prescribed medication, soft drugs, or hard drugs, and
the ability to attend study appointments with no technological requirements. Participants
were also asked not to consume alcohol or any medication at least 72 h before participation
in the experiment.

Exclusion criteria included being younger than 17 or older than 24 years, being left-
handed, having long hair, not fluently speaking the Polish language, being seriously or
chronically ill, currently taking prescribed medication, soft drugs, or hard drugs, having a
medical treatment history in one year following the study, or being unable to attend study
appointments. Participants who did not meet the inclusion criteria or declared any serious
diseases, including mental disorders, were automatically excluded from the cohort. Prior
to participating in the experiment, participants received information about EEG research
and technology and signed an agreement for participation.

The proportion of women pursuing a computer science education remains low, making
it challenging to create a well-balanced group for the experiment that included an equal
number of left-handed and right-handed men and women. Additionally, it was observed
that a significant majority of women studying computer science had long hair. It is worth
mentioning that studies have documented variances in electroencephalogram readings
between men and women [85,86], and we aimed to ensure a relatively equal response from
the cohort.

3.5. The 14th min Choice Justification

In summary, the choice of the 14th min for analysis was based on a previous postulation
that it is the most likely time for the participants to be experiencing a deep state of relaxation.
To confirm this, the generalized linear model classifier (GLM) was used to distinguish
between relaxation and mental state with an approximately 80% accuracy.

The generalized linear model enhances the general linear model by introducing a
specified link function to establish a linear association between the dependent variable and
the factors and covariates. The advantage over the general linear model is that there is no
need for the data distribution to be normal. In the case of the presented research, the link
function was logit. The dependent variable was the Mental Workload or Guided Imagery
group. The factors were band (alpha, beta, and theta) powers from every minute of the
recordings.

Generalized linear models (GLMs) are often used for time series analyses [87] and it is
not aim of this paper to explain in detail all its cases and formulas. However, the idea of
GLM consists of three components:

1. An exponential family of probability distribution (this means it is not necessary for a
normal distribution);

2. A linear predictor η = Xβ;

3. A link function g such that E(Y) = µ = g−1(η)

where Y is the dependent variables vector (in our case GI/Mental task workload), E(Y) is
the expected value of Y (it is either GI or MT), g is the so-called linking function (in our
case logit), X is a matrix of the independent variables (in our case values collected from the
EEG bands), and β represents model factors and is set by the model while training. In our
case, the model is expressed by:

g(E(Y)) = Xβ (1)

and g is a function expressed by:

logit(p) = σ−1(p) = ln
p

1 − p
(2)

for p ∈ (0, 1).
To further validate the choice of the 14th min, the GLM accuracy was tested on each

one-minute-long interval of time, from the beginning to the end of the recordings. The
results showed a local maximum in the 14th min for both GI and Mental task sessions,
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followed by a falling slope until the 16th min. After the 17th min, the waking up process
started, and the classifier’s accuracy increased, indicating a different and distinguishable
state of brain activity. Therefore, the 14th min was chosen as the appropriate time for
further analysis (Figure 2).

Figure 2. The 14th min choice justification.

The intention behind using machine learning classifiers was to help in the classifica-
tion of biomedical signals for therapy support [88,89]. These tools and algorithms have
been used for a long time for the diagnosis of various disorders, such as alcoholism or
depression [90,91]. Additionally, they have been used to measure various biological system
behaviors and for diagnostic purposes [92]. Advanced modeling techniques have also been
employed to better understand these systems [93,94]. The use of new measures, such as
those defined in recent research [95,96], has further advanced the accuracy of these models.

3.6. The Final Cohort

Finally, after pre-processing the signal and eliminating the poor quality, as well as
leaving only the participants who provided as with a full set of data and good EEG
recordings and taking into account all the exclusion criteria, we had 20 subjects left in the
GI sub-cohort and 28 subjects in the mental task engaged sub-cohort.

4. Statistical Analysis of the Data

The current study aimed to compare the effects of GI and a mental task intervention
on cognitive and emotional measures, as well as to explore potential correlations between
these measures. A group of participants were randomly assigned to either the GI or mental
task group and completed a series of tests, including brain wave measures, attentional
control tasks, and anxiety and affective measures.

Table 1 shows the participants’ characteristics for subjective measures in a study with
two groups: the GI group (N = 20) and the mental task group (N = 28). The measures
include anxiety, helplessness, stress reduction, and relaxation increase. A one-way analysis
of variance (ANOVA) was conducted to test for significant differences between the groups.

In neuroscience research, longitudinal data are often analyzed using an analysis
of variance (ANOVA) and a multivariate analysis of variance (MANOVA) for repeated
measures (rmANOVA/rmMANOVA) [97]. MANOVA is an extension of ANOVA, which
measures the impact of independent categorical variables upon numerous dependent
continuous variables. It is a process used for comparing the sample means, which are
multivariate in statistics. MANOVA is mostly used in a population with more than two
variables. It is a non-parametric test. However, these analyses have special requirements:
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The variances of the differences between all possible pairs of within-subject conditions
(i.e., levels of the independent variable) must be equal. They are also limited to fixed
repeated time intervals and are sensitive to missing data [97]. In contrast, other models
such as the generalized estimating equations (GEE) suggest another way to consider
the data and the studied phenomenon. Instead of forcing the data into the ANOVAs
assumptions, it is possible to design a flexible/personalized model according to the nature
of the dependent variable.

We decided to use an ANOVA for our data analysis due to its balance and neuroscien-
tific character.

Table 1. Participants’ characteristics for subjective measures. Bold means statistical significance.

Guided Imagery
Group (N = 20)

Mental Task Group
(N = 28)

Statistical Test

Measures M SD M SD F p η2

Anxiety measures
(pre-test)

STAI Trait 45.00 7.91 45.93 33,117 0.12 n.s. n.s.

STAI State 39.85 9.98 40.29 31,959 0.15 n.s. n.s.

Motivational and
affective measures

Helplessness
(pre-test)

18.00 5.48 17.3 4.94 0.41 n.s. n.s.

Stress reduction
(before–after)

2.25 5.27 1.00 1.52 5.12 0.03 0.102

Relaxation increase
(after–before)

2.25 5.17 1.15 2.67 2.28 0.14 0.048

For the anxiety measures (STAI Trait and STAI State) at pretest, there were no sig-
nificant differences between the groups. For helplessness, there was also no significant
difference between the groups. However, there was a significant difference in the stress
reduction. An ANOVA showed a significant difference between the two groups (p < 0.05,
η2 = 0.102), indicating that the GI group had a greater reduction in stress levels compared
to the mental task group. Finally, there was a marginally significant difference in the
relaxation increase between the two groups, with the GI group showing a greater increase
in relaxation.

The 14th min of the GI session was chosen for analysis using the general linear model
(GLM) classifier because it was found to be the time when participants were in the deepest
state of relaxation. The GLM was able to distinguish between relaxation and mental states
with 80% accuracy [98], and the results showed that the 14th min had a local maximum
for both GI and mental task sessions, making it an appropriate time for further analysis
to find if a higher alpha power was significantly correlated with a better performance in
attentional tests such as the numerical Stroop, anti-saccade, and Go/No-go tasks.

Table 2 presents the results of a study that compared two different interventions, GI
and mental tasks, on brain wave patterns and attentional control measures.

The participants were 48 individuals, with 20 randomly assigned to the GI group and
28 to the mental task group. The following measures were collected for both groups: alpha
power and Beta power brain wave activity at the 14th min of the intervention, attention
control, numerical Stroop task (% errors), anti-saccade task (% errors), and Go/No-go task
(% errors).

Table 2 presents the results of comparing the GI group and the mental task group in
terms of brain waves and attentional control measures. The table includes the means and
standard deviations of the alpha and Beta power in the 14th min of the GI and mental task
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groups, as well as the scores in the attention control measures. The ANOVA results include
F-values, p-values, and effect sizes (η2) for each measure. The results indicate a significant
difference in the GI group, where we can observe a higher alpha power compared to the
mental task group, which was statistically significant (F = 5.23, p = 0.023). However, there
was no significant difference in beta power between the two groups. Referring to attentional
control measures, the GI group had lower errors on the numerical Stroop task compared to
the mental task group, and this difference was statistically significant (F = 8.06, p = 0.007,
η2 = 0.146). Similarly, the GI group had lower errors in the anti-saccade task compared
to the mental task group, and this difference was also statistically significant (F = 7.31,
p = 0.010, η2 = 0.135). Although the GI group did not show significant improvements in the
Go/No-go task, it is possible that this discrepancy can be explained by differences in the
cognitive demands of the tasks. The Go/No-go task requires both response inhibition and
working memory, whereas GI may not enhance the working memory to a sufficient degree.

Table 2. Participants’ characteristics for brain waves and attentional control measures. Bold means

statistical significance.

Guided Imagery
Group (N = 20)

Mental Task Group
(N = 28)

Statistical
Test

Measures M SD M SD F p η2

Brain waves

Alpha power (14th min) 0.25 0.13 0.17 0.12 5.23 0.023 0.105

Beta power (14th min) 0.08 0.03 0.07 0.03 1.23 n.s. n.s.

Attention control

Numerical Stroop task
(% errors)

1.35 1.92 3.24 2.51 8.06 0.007 0.146

Anti-saccade task
(% errors)

1.87 3.16 4.42 3.16 7.31 0.010 0.135

Go/No-go task
(% errors)

7.33 6.72 8.85 5.93 0.70 n.s. n.s.

The results suggest that GI may be more effective for enhancing attentional control in
specific contexts, as it increases the alpha power and reduces stress levels through mental
rehearsal and visualization, rather than through sustained focus practice like meditation.

The final analysis that was conducted in the described study is the Pearson’s R correla-
tions, verifying the strength and direction of the relationships between different variables.

Table 3 presents the correlations between seven variables measured in the study.
Variable 1 represents alpha power at the 14th min, while variables 2 and 3 represent errors
in the numerical Stroop and anti-saccade tasks, respectively. Variable 4 represents stress
reduction, variable 5 represents helplessness, and variables 6 and 7 represent the STAI Trait
and STAI State anxiety measures, respectively. The correlation coefficients range from −1
to 1, with −1 indicating a perfect negative correlation, 0 indicating no correlation, and
1 indicating a perfect positive correlation. For example, the correlation between the alpha
power and numerical Stroop error is −0.35, which indicates a negative correlation. As the
alpha power increases, the numerical Stroop error tends to decrease.

The results indicate that there was a significant negative correlation between alpha
power at the 14th min and errors on the numerical Stroop task and anti-saccade task,
suggesting that a higher alpha power was associated with better performance in these tasks.

Additionally, there was a significant positive correlation between stress reductions
and helplessness, indicating that higher levels of stress reduction were associated with
lower levels of helplessness. Furthermore, the anxiety measures (STAI Trait and STAI State)
were positively correlated with each other and with the anti-saccade task and the numerical
Stroop task. This suggests that higher levels of anxiety were associated with poorer perfor-
mances in these attentional control tasks. Notably, the correlation between the STAI State
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anxiety measure and the alpha power at the 14th min was also significant, indicating that a
higher anxiety was associated with a lower alpha power. Overall, these findings highlight
the complex relationships between brain wave activity, attentional control measures, stress
reduction, helplessness, and anxiety. Further research is needed to better understand these
relationships and their potential implications in cognitive functioning and mental health.

Table 3. Correlations between measures. Note: * p < 0.05, ** p < 0.01. Bold means statistical

significance.

Variable 1 2 3 4 5 6 7

1. Alpha power 14 min -

2. Num. Stroop (% errors) −0.35 ** -

3. Anti-Saccade (% errors) −0.45 ** −0.38 ** -

4. Stress Reduction 0.29 * −0.03 −0.22 -

5. Helplessness 0.24 −0.12 −0.04 0.29 * -

6. STAI Trait −0.12 0.10 0.27 0.10 0.48 ** -

7. STAI State 0.14 0.01 0.12 0.21 0.37 ** 0.74 ** -

Two mediation models were employed to investigate how GI affects erroneous re-
sponses in the Stroop and anti-saccade tasks via alpha power at the 14th min. The findings
indicate that alpha power at the 14th min acts as a dependable mediator between GI and
the number of errors made in both attentional tasks, namely Stroop and anti-saccade tasks.

The mediation model (Figure 3) suggests that the relationship between GI and the
Stroop test is mediated by the alpha power at the 14th min. Specifically, the significant
negative coefficient between GI and the Stroop test suggests that GI leads to a better
performance in the Stroop test and GI is a reliable mediator of the relationship.

Based on a mediation analysis (Figure 4), the model suggests that the relationship
between GI and errors in the anti-saccade test is partially explained by changes in the alpha
power. A mediation analysis suggests that an increase in the alpha power is associated
with a reduction in errors in the anti-saccade test.

Figure 3. The effect of GI on reducing erroneous reactions in the Stroop test is mediated by the alpha

power at 14 min. * p < 0.05, ** p < 0.01.

The significance of the t-values indicates that the coefficients are unlikely to have
occurred by chance, supporting the relationships between the variables in the medi-
ation model. These results suggest that the use of GI may improve cognitive perfor-
mance, particularly in tasks requiring inhibitory control, by increasing the alpha power.
However, further research is needed to confirm these findings and explore the underlying
mechanisms of this relationship.
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Figure 4. The effect of GI on reducing erroneous reactions in the anti-saccade test is mediated by the

alpha power at 14 min. * p < 0.05, ** p < 0.01.

5. Limitations of the Study

The study is subject to several limitations that should be considered in the interpreta-
tion of the findings. Firstly, the relatively small sample size employed in this study may
constrain the generalizability of the results to larger populations or different demographic
groups. Consequently, caution should be exercised when extrapolating the findings to
broader contexts. Furthermore, the study primarily focused on healthy male participants
with no prior experience with guided imagery sessions and no chronic medical conditions.
Consequently, the extent to which the results can be applied to other populations or indi-
viduals with specific health conditions may be limited. Additionally, the study primarily
examined the short-term effects of the guided imagery session, with limited investigations
into the long-term or sustained benefits. Future research should address this limitation by
investigating the durability of the observed effects over an extended period. It is worth
considering for future studies the inclusion of an additional control group that receives
either no intervention or an alternative intervention. The absence of such a control group
in this study poses challenges in isolating the specific effects of guided imagery from other
potential factors.

Taken together, these limitations underscore the need for future research with larger
and more diverse samples, longer follow-up periods, and additional control groups.
By addressing these methodological considerations, a more comprehensive understanding
of the effectiveness and potential limitations of guided imagery can be achieved, not only
in the context of stress management but also in terms of enhancing attentional control
test results. Such investigations will provide valuable insights into the broader cognitive
benefits of guided imagery and further enhance its potential as a therapeutic intervention.

6. Conclusions

This study investigated the effects of the GI relaxation technique on cognitive and
emotional measures and explored potential correlations between these measures. Guided
imagery offers a distinct experiential approach to mindfulness and mental well-being.
While meditation primarily focuses on cultivating present-moment awareness and detach-
ment from thoughts, guided imagery involves actively engaging the imagination to create
vivid sensory experiences [99]. This approach can be particularly helpful for individuals
who find it challenging to quieten the mind or those who benefit from more structured
practices. A further exploration of guided imagery is worthwhile as it broadens our un-
derstanding of mindfulness, offers customization, and provides a complementary practice
to enhance overall mental health [100]. The robust findings from this research provide
compelling evidence supporting the efficacy of guided imagery (GI) as an intervention for
stress reduction and relaxation, surpassing the effects observed in the mental task group.
Notably, the GI group exhibited significantly higher levels of alpha power, a key indicator
of brain wave activity associated with improved attentional control. The strong correlation
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between alpha power and enhanced performances in attentional tasks further reinforces the
potential benefits of GI in optimizing cognitive functioning. These findings underscore the
significance of incorporating the GI technique in stress management protocols and highlight
its promising role in enhancing attentional control abilities. The findings obtained in this
study align with the existing literature, providing consistent evidence that an increase in
alpha power is associated with an improved performance in attentional tests. Moreover,
the observed reduction in stress levels resulting from the guided imagery (GI) interven-
tion contributes to enhanced attentional processes by mitigating the distraction caused by
anxiety-related thoughts or worries. These results highlight the beneficial impact of GI on
attentional functioning and support its potential as an effective strategy for optimizing
cognitive performance in stress-inducing contexts.

Based on the findings of this study, the formulated hypotheses put forth by the
researchers were supported. The guided imagery (GI) intervention resulted in an increase
in alpha power and improved performances in attentional tests, specifically the Stroop
and anti-saccade tasks. It is worth noting that the lack of significant improvements in the
Go/No-go task can be attributed to the varying attentional demands across different tests.
As previously described, these attentional tests assess distinct types of attentional control.
For instance, the numerical Stroop task measures attentional inhibition, which involves
suppressing irrelevant information and focusing on relevant stimuli. The anti-saccade task
assesses attentional shifting, which pertains to the ability to shift attention from one target
to another. On the other hand, the Go/No-go task evaluates attentional vigilance, which
involves sustaining attention over time and responding selectively to relevant stimuli while
ignoring irrelevant ones.

In contrast to mindfulness practices, GI does not enhance focused attention but rather
involves the visualization of pleasant images which elicit stress- and anxiety-reducing
responses, potentially influencing the alpha power. It is noteworthy that the alpha power
has been found to be positively correlated with information processing speeds [101]. The
results suggest that the GI intervention may have had a more pronounced effect on cogni-
tive flexibility, which could have contributed to the improved performances in the Stroop
and anti-saccade tasks. These findings highlight the unique cognitive mechanisms engaged
during GI intervention and its potential to enhance cognitive flexibility in a manner distinct
from traditional mindfulness practices. The mediation model examining the relationship
between GI, alpha power at the 14th min, and performance on the Stroop and anti-saccade
tests provides a comprehensive understanding of the interplay between these variables. It
sheds light on the potential mechanisms through which GI can affect cognitive performance,
particularly in the context of attentional control tasks. In summary, the mediation model
presented here offers a valuable structure for comprehending the intricate associations
between GI, alpha power, and cognitive performance. It underscores the necessity for addi-
tional investigations to gain a deeper understanding of this domain. In particular, pairwise
comparisons methods (analyzed for accuracy by Koczkodaj [102]) can be considered.

In conclusion, this study offers valuable insights into the potential advantages of
guided imagery (GI) as an intervention for enhancing cognitive performance and emotional
well-being. The findings contribute to the expanding body of research on cognitive and
emotional interventions, providing valuable knowledge that can inform the development
of effective interventions targeting cognitive and emotional functioning. Further investiga-
tions are warranted to examine the long-term effects of GI interventions and delve deeper
into the potential associations between these cognitive and emotional measures. Such
research endeavors would help advance our understanding of the sustained effects and
the intricate interplay between cognitive and emotional domains, ultimately contributing
to the refinement of interventions aimed at promoting overall cognitive and emotional
well-being.

Moreover, a notable feature of this research involved the application of multi-sensor
EEG signal classification and a GLM for the categorization of two mental states.
These findings offer compelling evidence regarding the potential for developing innovative
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therapies in the domain of human–machine interactions like in [103] and that EEG is not
the only medium that can be used to support human–machine interaction control [104,105].
For instance, the study titled “Golden Subject Is Everyone: A Subject Transfer Neural Net-
work for Motor Imagery-based Brain Computer Interfaces” [106] explores the use of neural
networks to transfer knowledge between individuals in the context of motor-imagery-based
brain–computer interfaces. The researchers propose a new approach that allows data from
one participant to be used to train a neural network, which can then be applied to predict
and interpret brain signals from a different participant. The findings indicate that this
method has potential and could lead to the development of more inclusive and widely
applicable brain–computer interfaces.
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81. Kwaśniewicz, Ł.; Wójcik, G.M.; Kawiak, A.; Schneider, P.; Wierzbicki, A. How You Say or What You Say? Neural Activity
in Message Credibility Evaluation. In Proceedings of the International Conference on Computational Science, Amsterdam,
The Netherlands, 3–5 June 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 312–326.

82. Schneider, P.; Wójcik, G.M.; Kawiak, A.; Kwasniewicz, L.; Wierzbicki, A. Modeling and Comparing Brain Processes in Message
and Earned Source Credibility Evaluation. Front. Hum. Neurosci. 2022, 16, 808382. [CrossRef]

83. EGI. Net Station Waveforms Tools Technical Manual; Electrical Geodesics, Inc.: Eugene, OR, USA, 2006.
84. Wojcik, G.M.; Shriki, O.; Kwasniewicz, L.; Kawiak, A.; Ben-Horin, Y.; Furman, S.; Wróbel, K.; Bartosik, B.; Panas, E. Investigating

brain cortical activity in patients with post-COVID-19 brain fog. Front. Neurosci. 2023, 17, 1019778. [CrossRef] [PubMed]
85. Wada, Y.; Takizawa, Y.; Zheng-Yan, J.; Yamaguchi, N. Gender differences in quantitative EEG at rest and during photic stimulation

in normal young adults. Clin. Electroencephalogr. 1994, 25, 81–85. [CrossRef] [PubMed]
86. Cantillo-Negrete, J.; Carino-Escobar, R.I.; Carrillo-Mora, P.; Flores-Rodríguez, T.B.; Elias-Vinas, D.; Gutierrez-Martinez, J. Gender

differences in quantitative electroencephalogram during a simple hand movement task in young adults. Rev. Investig. Clin. 2017,
68, 245–255.

87. McCullagh, P. Generalized Linear Models; Routledge: Hoboken, NJ, USA, 2019.
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ABSTRACT

The Guided Imagery technique is reported to be used by therapists all over the world in order to
increase the comfort of patients suffering from a variety of disorders from mental to oncology
ones and proved to be successful in numerous of ways. Possible support for the therapists can be
estimation of the time at which subject goes into deep relaxation. This paper presents the results of
the investigations of a cohort of 26 students exposed to Guided Imagery relaxation technique and
mental task workloads conducted with the use of dense array electroencephalographic amplifier. The
research reported herein aimed at verification whether it is possible to detect differences between
those two states and to classify them using deep learning methods and recurrent neural networks such
as EEGNet, Long Short-Term Memory-based classifier, 1D Convolutional Neural Network and hybrid
model of 1D Convolutional Neural Network and Long Short-Term Memory. The data processing
pipeline was presented from the data acquisition, through the initial data cleaning, preprocessing
and postprocessing. The classification was based on two datasets: one of them using 26 so-called
cognitive electrodes and the other one using signal collected from 256 channels. So far there have not
been such comparisons in the application being discussed. The classification results are presented by
the validation metrics such as: accuracy, recall, precision, F1-score and loss for each case. It turned
out that it is not necessary to collect signals from all electrodes as classification of the cognitive ones
gives the results similar to those obtained for the full signal and extending input to 256 channels
does not add much value. In Disscussion there were proposed an optimal classifier as well as some
suggestions concerning the prospective development of the project.
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1 Introduction

Relaxation methods proved to be helpful for the patients with some illnesses and mental disorders. Oncological patients
were reported to respond better to treatment when they used relaxation techniquesEremin et al. [2009]. Therefore, it is
beneficial to develop relaxation techniques in order to improve the quality of life. Moreover Guided Imagery can be
used as relaxation technique. It is largely applied and proved to be effective in reducing test anxiety and dealing with
stress of different originsUrech et al. [2010], Stephens [1992], Nguyen and Brymer [2018]. Electroencephalography
(EEG) can be a good method to find out if patients are in the state of relaxation or not. Scalp EEG is a non-invasive
method of measuring bio-electrical activity of the human brain. Moreover, it is less expensive and less stressful for
patients than other brain activity measuring devices, such as PET or MRIMurphy and Brunberg [1997], Sanei and
Chambers [2021]. On the other hand, manual multichannel EEG signal analysis can be a difficult and time-consuming
process. Machine learning and deep learning tools are commonly used to classify various types of data, starting with
the imagesKrizhevsky et al. [2017] to the different kinds of signalsNasrullah and Zhao [2019], Cheng et al. [2021]. The
aim of this study is to propose an EEG signal classifier based on the 1D Convolutional Neural Networks (CNNs) by
using raw signal with only basic filtering done as an input data.

For different types of EEG signals, classical machine learning (ML) methods, such as Support Vector Machines (SVM),
were used Bayram et al. [2013]. In classification of relaxation and concentration states based on the electroencephalo-
graphic signal SVMs can achieve around 80% of accuracy (ACC)You [2021].

State-of-the-art classification methods applied for the EEG signal already used Convolutional Neural Networks (CNNs)
with success Oh et al. [2019]. Furthermore, the above mentioned classical ML methods are increasingly being replaced
by deep learning approaches. Convolutional Neural Networks are applicable in the EEG signal analysis, for instance, in
motor imagery processing Xu et al. [2019], epileptic seizure detection Zhou et al. [2018], emotion recognition Zhang
et al. [2020], and research topics devoted to Brain-Computer Interfaces based on EEG feature extraction using CNNs
Chen et al. [2023], among others, even for identity authentication Zhang et al. [2022].

The most common approach is to classify signals by feeding the classifier with the frequency bands data. The EEG
signal is commonly partitioned into discrete frequency ranges, encompassing delta waves below 4 Hz, theta waves
ranging from 4 to 7 Hz, alpha waves spanning 8 to 12 Hz, beta waves between 13 and 30 Hz, and gamma waves
surpassing 30 Hz. It was proved that using specific selected bands of EEG signal, SVM classificator can be doneYou
[2021], Li and Feng [2019]. Calculation of power across specific frequency bands is needed. Therefore it would
be beneficial to skip manual feature extraction and use CNN-based feature extraction from the raw signal. Some
researchers used this approach successfully for emotions recognitionChen et al. [2019], Yanagimoto and Sugimoto
[2016]. The experiments described by Baydemir et al. showed that it is possible to classify EEG signal of low and
high cognitive load using 1D-CNN with a great accuracyBaydemir et al. [2022]. Classification of fNIRS-EEG mental
workload signal using CNN was made, showing a good accuracy of 89%Saadati et al. [2020]. However there are only
few papers including 1D Convolutional Neural Networks used specifically in the binary classification of relaxation and
mental workload using the raw EEG signal which still needs to be investigated.

In our previous research, the classical classification method was used for Guided Imagery and Mental Task groups
Zemla et al. [2023]. Generalized Linear Model (GLM) used in that research achieved 81% accuracy using a very specific
time segment, 779-839 seconds, extracted from the complete recording. In order to achieve this level of accuracy, this
required feeding the classifier with five EEG bands (alpha, beta, delta, theta, and gamma), extracted from the raw signal
of the 60 seconds duration. However, on the full-length recording, the accuracy of 90.77% was achieved.

The objective of this study is to compare four approaches to classification of EEG signals of two mental states: Guided
Imagery relaxation technique and Mental Workload tasks. For this research 1D Convolutional Neural Network (1D-
CNN), Long-Short Time Memory (LSTM), 1D-CNN-LSTM hybrid model and 2D-CNN (EEGNet) will be taken into
consideration. Signals were filtered and split into 1-second segments. Bad channels were marked automatically and
interpolated. That way all 256 channels could have been used for training. No further preprocessing or artifact removal
was done. No features were extracted from that signal manually.

2 Materials and methods

The signal for this study was obtained from a cohort of 26 males, aged 19-24 years. They were all right-handed and
short-haired. Being right- or left-handed could influence the results due to brain lateralization. Described experiments
were reviewed and approved by the Maria Curie- Skłodowska University Bioethical Commission. The experiments
were conducted according to the best experimental practices and guidelines. They were also done under the supervision
of qualified psychologists. All participants agreed to the EEG signal recording and were informed about the purpose of
the experiment. They all signed written consent before taking part in it.
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2.1 Inclusion and exclusion criteria

The criteria for selecting participants in this study involve being a healthy, right-handed male, aged 19 to 24, with short
hair and fluency in Polish. They should have no history of chronic diseases, no current use of prescribed or recreational
drugs, and should be able to attend study appointments without specific technological requirements. Additionally,
participants were required to abstain from alcohol and medication for at least 72 hours before the experiment.

On the other hand, exclusion criteria encompassed individuals younger than 19 or older than 24, left-handed individuals,
those with long hair, limited proficiency in Polish, serious or chronic illnesses, current use of medications or drugs,
recent medical treatments, or inability to attend study appointments. Participants failing to meet the inclusion criteria or
declaring serious diseases, including mental disorders, were automatically excluded. Prior to participation, participants
were informed about the EEG research and technology and consented to take part in the study.

There were several reasons for recruiting participants aged 19-24 and only males. Firstly, the majority of individuals in
this age range are students, particularly those pursuing first and second degrees. Secondly, in the Institute of Computer
Science, there is a predominant male student population, making it challenging to form both target and control groups
including women. However, the most significant reason was the documented changes in women’s EEG cortical activity
throughout the menstrual cycle, as published by Solis-Ortiz et al. [1994], Krug et al. [1999]. These changes introduce
additional variables into the model. Variations are observed in both alpha and beta bands Bazanova et al. [2014], Souza
et al. [2022], which could be crucial for signal classification related to the individual’s state of mind.

Moreover, it was noted that a substantial majority of female computer science students had lengthy hair. It is noteworthy
that the research has also highlighted differences in electroencephalogram patterns between males and females Wada
et al. [1994], Cantillo-Negrete et al. [2017], and the objective was to achieve a relatively balanced representation from
the participant pool.

They all signed a written consent. Half of the group listened to the Guided Imagery relaxation recording prepared by the
psychologist. The other half were asked to recall specific kinds of information: the names of Polish administrative units
(voivodships), the names of the Zodiac signs, the names of US states, etc. (Mental Task group or MT group). Tasks
were given by the same psychologist on the recording. After each task there was a period of silence when participants
were thinking about the answer. The GI group was supposed to relax during the experiment, while the MT group was
supposed to be put under mental workload. At the beginning of the experiment the MT group was told that after its
completion they would be asked to write down all the information they will have recalled. The Guided Imagery and the
Mental Task recordings were of the same length of 20 min. The participants were asked to close their eyes and each
trial was conducted in the lying position with lights turned off to decrease the effects of muscle artifacts, power line
noise and distractions on the EEG signal.

The experiments were conducted in the EEG Laboratory of the Department of Neuroinformatics and Biomedical
Engineering of Maria Curie-Skłodowska University (UMCS) in Lublin, Poland (Figure 1). All trial signals were
recorded at the sampling frequency of 250 Hz with the use of a 256-channel dense array EGI GSN 130 series cap
(Figure 1). For signal acquisition, the EGI Net Station 4.5.4 software was used.

Our dense array amplifier recorded the signal from all 256 electrodes. However, we expected to find differences on the
so-called cognitive electrodes based on the previous experience in the cognitive processing EEG signal analysis Wojcik
et al. [2023], Kawiak et al. [2020a], Kwasniewicz et al. [2021], Schneider et al. [2022]. These electrodes are described
in the EGI 256-channel cap specification Geodesics [2003, 2009, 2011] as the best for cognitive ERP observations,
covering the scalp regularly, and numbered as follows: E98, E99, E100, E101, E108, E109, E110, E116, E117, E118,
E119, E124, E125, E126, E127, E128, E129, E137, E138, E139, E140, E141, E149, E150, E151, and E152 (see Fig.2).

2.2 Signal preprocessing and data sets preparation

The recorded EEG signals were pre-processed using mne Python toolkit 1.3.0 Gramfort et al. [2013]. Noisy channels
were removed from the signal and interpolated to maintain the same size of data in each sample. For automatic bad
channel rejection the RANSAC algorithm implemented in pyprep toolkit Appelhoff et al. [2023] was used. This toolkit
is based on the PREP pipeline designed for EEG signal preprocessing in MATLABBigdely-Shamlo et al. [2015]. The
signal from each trial was filtered with a band pass filter of 1-45 Hz. Each signal was cropped from 10 to 12 minutes of
the recording, which gives 120 seconds per subject. The time segment was chosen based on the previous experience with
GI relaxation method. It was proved that the period between 10 and 14 min. of recording has the greatest significance
for distinguishing the relaxation and mental workload state Zemla et al. [2023]. Each cropped signal was split into
1-second segments. This gives a total amount of 3,120 recording samples (1,560 samples of Guided Imagery group and
1,560 samples of Mental Task group). Figure 5 shows the data preparation steps. The sample 1-s segments for both GI
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Figure 1: On the left: EGI 256-channel EEG cap.On the right: the overview of the whole EEG Laboratory at UMCS,
Lublin, Poland

Figure 2: Electrodes placement on HydroCel GSN 130 Geodesic Sensor NetGeodesics [2009], Wojcik et al. [2023]
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Figure 3: Power spectral density of different frequency bands shown for 1-s segment of signal from GI sample subject

Figure 4: Power spectral density of different frequency bands shown for 1-s segment of signal from MT sample subject

and MT states were shown in terms of different power densities for each of frequency bands in Figures 3 (for GI) and
4 (for MT).

Two sets of electrodes were selected for the experiments. The first one included a full set of 256 channels of EEG
signal. The second one contained a subset of 26 electrodes from the central-parietal region to reduce the amount of data
subjected to training. Based on the previous research in analyzing cognitive processing of EEG signals Kawiak et al.
[2020b], Kwaśniewicz et al. [2020], Schneider et al. [2022], variations were expected to be observed specifically on the

Figure 5: Data science pipeline - steps of data preparation for training
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above mentioned 26 cognitive electrodes. Those electrodes, specified as optimal for observing cognitive phenomena
according to the EGI 256-channel cap specifications EGI [2006], are positioned in the central-ocipital region and
numbered: E98, E99, E100, E101, E108, E109, E110, E116, E117, E118, E119, E124, E125, E126, E127, E128, E129,
E137, E138, E139, E140, E141, E149, E150, E151, and E152. The topographical map showing the placement of these
electrodes on the scalp can be found in the EGI documentation EGI [2006] and in Wojcik et al. [2023], Fig. 1. It was
also showed that they cover the region of the greatest significance for the alpha band-based research, as this band is
correlated with the relaxation stateSanei and Chambers [2021]. Finally, the both datasets consisted of 3,120 signal
samples. Each sample included 256 EEG channels in the data set 1 (FULL-256) or 26 EEG channels in the data set 2
(COGN-26), and 250 timesteps per second. No further pre-processing or feature extraction was done.

The data set was split into 2,640 samples in the training data set and 480 samples in the testing data set. 6-fold cross-
validation was used to confirm performance of the model. The StratifiedGroupKfold method from scikit- learnPedregosa
et al. [2011] was used to prevent the data from one subject to be put in training and validation data sets at the same time.
On the other hand, StratifiedGroupKFold keeps the data set with a balanced number of samples for each group. The
data set was shuffled to prevent the model from learning data from only one subject in one batch. Folds were saved for
benchmarking purposes.

2.3 EEGNet

The first method of classification of EEG signal in this research was 2D-CNN architecture called EEGNet proposed
by Lawhern et al.Lawhern et al. [2018]. Implementation of this network was done using tensorflow and keras. All
architecture remained as presented in the original research. The parameters were adjusted as suggested by the EEGNet
authors. All parameters are described in table Table 1 and are given in Figure 6.

The learning rate was set to 0.001, the optimizer was Adam and the loss function was binary cross-entropy. Loss
function selection resulted in changing the activation function from original Softmax to Sigmoid.

EEGNet performance in terms of validation accuracy and validation loss was selected as reference for all other methods
of binary classification described in this research. Using COGN-26 data set, the model had 2,153 parameters. After
training on FULL-256 data set the model had 6,753 parameters.

Parameter Description Value
F1 Number of temporal filters 8
F2 Number of pointwise filters 16
k Kernel length 125
D Number of spatial filters for each temporal convolution 2 (original value)
- Activation function in output layer Sigmoid

Table 1: Parameters set for EEGNet architecture according to original paperLawhern et al. [2018]

2.4 LSTM

Long short-term memory (LSTM) is a type of Recurrent Neural Network cell introduced as a solution for learning
features from long time sequences including noisy dataHochreiter and Schmidhuber [1997].

The simple LSTM-based network was tested as a second reference method. It was proved that Bidirectional LSTM-
based (BiLSTM) model can be a good method of EEG classification tasks like emotion classificationYang et al. [2020]
or seizure classificationHu et al. [2020].

The architecture presented here contained one BiLSTM layer having 64 units(cells) for each backward and forward
direction. The number of units were selected according to Yang et al. [2020]. As the input signals included 250 samples
each, we decided to take 1/4th of the sampling rate as a unit number. The closest power of 2 was 64. In the backward
and forward directions, this means that our model included of 128 units in BiLSTM configuration. Two fully-connented
(called also dense) layers, of 32 and 1 node, followed BiLSTM layer. Between those layers, dropout layer was set as the
regularization method. Dropout rate was set to 0.5. Activation function in output Fully Connected layer was Sigmoid.
The selection of power of two as the unit number in the LSTM layer was supported by connecting CNNs and LSTM in
the next step. The selection of 32 nodes in the first Fully Connected layer was supported by trials with different sizes of
16, 32, 64 and 128. That number in that BiLSTM configuration gave the best results.

The learning rate was set to 0.001, the optimizer was Adam and the loss function was binary cross-entropy.
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Figure 6: EEGNet detailed model architecture with parameters for specific layers: f - number of filters, k - kernel size,
pool sizes and dropout rates.

Using the COGN-26 data set, the model had 50,753 parameters. After training using the FULL-256 data set, the model
had 168,513 parameters. Detailed architecture is given in Fig. 7.

2.5 1D-CNN

The proposed CNN model included of 4 convolutional layers. The layer is the main element of Convolutional Neural
Network. It contains a set of filters which adjust their parameters during the model training phase. The LeakyReLU
activation layer was used after each convolutional layer to provide non-linearitySchmidhuber [2015]. Moreover, the
Batch Normalization layer was used in each block of convolution containing a convolution layer and an activation
layer. The purpose of Batch Normalization is to normalize data in batch to enhance learning speed and performance.
Batch Normalization was neglected in the third block of convolution because Spatial Dropout (called SpatialDrop in
Fig. 8) with the dropout rate of 0.25 was used before. Spatial Dropout is a method of regularization that drops randomly
features learned by convolution layer during training to reduce overfittingSanghun and Chulhee [2020]. Instead of
using pooling layers, strided convolution was applied. It can provide simpler architecture with better accuracy in
some applicationsSpringenberg et al. [2014]. In the case of proposed CNN model it was the best choice in terms of
achieved accuracy. The Flatten layer was set in front of two Fully Connected layers, which are responsible for binary
classification of features extracted by convolutional layers. The dropout layer was used between Fully Connected layers
as regularization method. It deactivates randomly weights of certain parameters during the training process to reduce
overfittingSrivastava et al. [2014]. The dropout rate was set to 0.5.

For the 1D-CNN model the loss function and optimizer remain the same as for the EEGNet and LSTM-based model.
The learning rate was reduced to 0.00001 from the default value of 0.001.

The numbers of parameters in the model for COGN-26 and FULL-256 data sets were: 165,649 and 176,689 respectively.
Figure 8 shows the model architecture in detail.
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Figure 7: LSTM detailed model architecture with parameters of specific layers

2.6 1D-CNN-LSTM

It was proved that 1D-CNN-LSTM can be applied to the EEG signals successfully. It was reported that this kind of
approach can be beneficial for epileptic seizures classification Xu et al. [2020] and motor imagery classification Li et al.
[2022].

A decision was made to connect 1D-CNN network model with the LSTM one described in the previous sections. In
order to pass the Flatten output as input to the BiLSTM layer, and mantain the same model weights for all output data,
the Time Distributed layer was used (referenced in Figure 9 as TimeD. Moreover as data are processed in CNN layers
and the input size for LSTM part is already reduced, we decided to reduce number of nodes in first Fully Connected
layer from 64 to 32. This resulted in model architecture shown on Figure 9.

The numbers of parameters in the model for the COGN-26 and FULL-256 data sets were: 77,777 and 88,817 respectively.
The learning rate, optimizer and loss function were set as for 1D-CNN model.

2.7 Evaluation metrics

Validation accuracy was selected as the main performance metric due to the fact that the balanced data sets were used
for the binary classification. Validation loss was also monitored during the model designing phase. F1-score, precision
and recall averaged over 6 folds are also reported for all tested models. Mentioned metrics are defined as followsHossin
and Sulaiman [2015]:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Here TP is defined as True Positives, TN - True Negatives, FP - False Positives and FN - False Negatives.

Precision =
TP

TP + FP
(2)

8
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Figure 8: Detailed 1D-CNN model architecture with parameters of specific layers: f - number of filters, k - kernel size,
pool sizes and dropout rates

Precision quantifies the accurate prediction of positive labels within the total predicted labels belonging to the positive
class.

Recall =
TP

TP + FN
(3)

Recall is a measure of the number of positive labels that are correctly classified.

F1 =
2 ⇤ Precision ⇤Recall

Precision+Recall
=

2 ⇤ TP
2 ⇤ TP + FP + FN

(4)

F1 is defined as the harmonic mean between the recall and precision values.

Results

All architectures were tested using keras and tensorflow 2.15 packages with Python 3.11. The hardware used for testing
was an Intel i7-based machine with 64GB of DDR5 RAM. The machine was also equipped with the Nvidia GeForce
RTX 4070-based graphics card with 12GB of RAM. The operating system was Ubuntu 23.10. None of the setup
elements were overclocked.

EEGNet was chosen as a reference because of the well documented architecture. The 6-fold cross validation procedure
was perofmed using the model. The results for each fold and validation metrics such as: accuracy, loss, F1-score,
precision and recall as well as their average values with standard deviations are presented in Tables 2 and 3 - for the
FULL-256 and COGN-26 data sets. On the average after the 6-fold cross-validation EEGNet obtained 0.7615 and
0.7646 accuracy respectively. In terms of precision as well as recall and F1-score with all average metrics exceeding
0.75 on both data sets model can be considered as a good reference point.
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Figure 9: 1D-CNN-LSTM detailed model architecture with parameters of specific layers: f - number of filters, k -
kernel size, pool sizes and dropout rates.

Table 2: EEGNet Validation Metrics for FULL-256 data set for each

Fold ACC Loss F1-score Precision Recall
1 0.7917 0.4186 0.8016 0.7652 0.8417
2 0.7958 0.562 0.8293 0.7126 0.9917
3 0.7563 0.6193 0.7053 0.8917 0.5833
4 0.6458 0.9923 0.7195 0.5956 0.9083
5 0.8375 0.3612 0.8465 0.8022 0.8958
6 0.7417 0.655 0.6575 0.9754 0.4958

Avg 0.7615 0.6014 0.7600 0.7905 0.7861
Std. 0.0658 0.2230 0.0764 0.1336 0.1989

The LSTM model with only one LSTM layer followed by dropout was chosen as second reference point. The results
6-fold cross-validation and validation metrics such as: accuracy, loss, F1-score, precision and recall as well as their
average values with standard deviations are presented in Tables 4 and 5. On the FULL-256 data set precision, recall and
F1-score achieved the averaged over folds values above 0.72. The averaged ACC for this case was 0.7250 on the full set
of channels. The model performed worse than EEGNet in terms of all described metrics. On the data set containing only
26 electrodes it performed the worst of all compared models with the cross-validated accuracy of 0.6833. It achievied
also the worst cross-validated accuracy for both data sets.

The 6-fold cross validation procedure was applied for the 1D-CNN model. The results for each fold and validation
metrics such as: accuracy, loss, F1-score, precision and recall as well as their average values with standard deviations
are presented in Tables 6 and 7. The averaged over folds accuracy for this model using the FULL-256 data set was
0.7682 which can be considered as a result comparable to that of the EEGNet model. On cognitive electrodes subset
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Table 3: EEGNet Model Validation Metrics COGN-26 data sets for each fold

Fold ACC Loss F1 Precision Recall
1 0.5312 0.6879 0.5455 0.5294 0.5625
2 0.7729 0.8835 0.8149 0.6877 1.0000
3 0.6812 0.7774 0.5321 1.0000 0.3625
4 0.9042 0.2666 0.8996 0.9450 0.8583
5 0.7917 0.3944 0.8270 0.7071 0.9958
6 0.9063 0.2442 0.9036 0.9295 0.8792

Avg 0.7646 0.5423 0.7538 0.7998 0.7764
Std. 0.1427 0.2755 0.1705 0.1856 0.2579

Table 4: LSTM Model Validation Metrics on FULL-256 data set for each fold

Fold ACC Loss F1 Precision Recall
1 0.6417 1.3984 0.7346 0.5833 0.9917
2 0.7479 0.7055 0.7881 0.6798 0.9375
3 0.7771 0.7453 0.8022 0.7209 0.9042
4 0.5417 2.434 0.5000 0.5500 0.4583
5 0.8854 0.3187 0.896 0.8200 0.9875
6 0.7563 0.6777 0.6777 1.0000 0.5125

Avg 0.725 1.0466 0.7331 0.7257 0.7986
Std. 0.1187 0.7644 0.1355 0.1658 0.2454

it achieved 0.8094 accuracy which outperforms all described architectures for this case. Also in terms of F1-score,
precision and recall this model performs the best in the research for the COGN-26 data set.

The 6-fold cross validation procedure was applied for the hybrid 1D-CNN-LSTM model. The results for each fold
and mentioned earlier validation metrics such as: accuracy, loss, F1-score, precision and recall as well as their average
values with standard deviations are presented in Tables 8 and 9. The averaged over folds validation accuracy for
this model trained using the FULL-256 data set was 0.7726. This was the best accuracy result for the full set of
channels of all approaches discussed in this paper. On the cognitive electrodes subset it achieved 0.7556 accuracy which
outperforms only the plain LSTM model in this case. For the COGN-26 data set the results are worse than those of
1D-CNN and comparable with EEGNet.

The averaged 6-fold cross-validated metrics for all models are reported in Tab. 10 for the FULL-256 data set and
in Tab. 11 for the COGN-26 data set. It can be seen that the worst model for classification from the full set of
electrodes is the one-layer LSTM-based model. The other models obtained comparable results in terms of accuracy,
while the best one was the 1D-CNN-LSTM hybrid model. On the other hand for the signal collected from subset of
cognitive electrodes in terms of validation metrics of accuracy, loss, F1-score and precision the 1D-CNN-based model
outperformed all other approaches with the accuracy of 0.8094, the F1-score value of 0.7806 and the precision close to
0.8970.

Discussion

There are known approaches of using convolutional neural networks in biometrics Prakash et al. [2022] and other
cybernetical tasks Daoui et al. [2023], more and more of them in the EEG signal classification Prakash et al. [2022].
More and more often deep learning methods are applied in the biomedical engineering systems to help patients with
numerous of disorders like sleep apneua Kandukuri et al. [2023]

The aim of this paper was to compare the effectiveness of four different architectures in the EEG signal classification
originating from a psychological experiment involving Guided Imagery. There were used the EEGNet, LSTM, 1D-CNN
and 1D-CNN-LSTM approaches in the case of dense array amplifier setup using 256 electrodes and the so-called
cognitive setup using 26 electrodes.

Training all of these models is relatively fast, does not require extensive resources, and as a result can be incorporated
into less demanding computational environments after training using different data. What is also beneficial is that in
spite of the fact that the EEG signal can vary in time and between subjects, it is possible to train the model with great
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Table 5: LSTM Model Validation Metrics on COGN-26 data set for each fold

Fold ACC Loss F1 Precision Recall
1 0.6542 3.0136 0.7422 0.5916 0.9958
2 0.75 4.276 0.8 0.6667 1.0000
3 0.5729 5.629 0.5393 0.5854 0.500
4 0.5437 5.277 0.6803 0.5236 0.9708
5 0.8125 0.8726 0.8421 0.7273 1.0000
6 0.7667 2.267 0.6957 1.0000 0.5333

Avg 0.6833 3.5559 0.7166 0.6824 0.8333
Std. 0.1101 1.8403 0.1063 0.1709 0.2458

Table 6: 1D-CNN Model Validation Metrics on FULL-256 data set for each fold

Fold ACC Loss F1 Precision Recall
1 0.8758 0.3077 0.8745 0.8782 0.8708
2 0.7917 0.5703 0.8227 0.7160 0.9667
3 0.8375 0.4113 0.8169 0.9355 0.7250
4 0.6042 1.6410 0.6494 0.5828 0.7333
5 0.7625 0.5687 0.8034 0.6853 0.9708
6 0.7375 0.5966 0.6519 0.9672 0.4917

Avg 0.7682 0.6826 0.7698 0.7942 0.7931
Std. 0.0947 0.4828 0.0954 0.1547 0.1827

accuracy using smaller segments of 1 second instead of 1 minute or even the full-length signal. Benefit of this work is
also that all the models make use of all 256 EEG channels to learn features and its simplified version of 26 cognitive
channels.

Indeed, the results obtained in this study show that the manual feature extraction (EEG bands, wavelets etc.) can be
neglected while using the CNN-based, LSTMs and hybrid models architectures.

Simple filtration and interpolation of the signal seem to be sufficient. The binary signal classifiers described above
perform well on raw data, resulting in the level of accuracy comparable to that of state-of-the art methods and to our
previous paper on Generalized Linear Model in EEG signal classification Zemla et al. [2023].

In case of the full signal collection recorded from 256 electrodes the 1D-CNN-LSTM performs best in terms of accuracy
and precision. Almost as good as the one above is 1D-CNN, especially that it has better loss and F1-score values. One
layer LSTM accuracy is the worst in this experiment, however still higher than 0.70 with the best recall of 0.79. The
reference model EEGNet has the accuracy of 0.76 (compared to the best discussed here 0.77) and generally lower
characteristics in the case of remaining three metrics. The collection and comparison of all results of the discussed
classifiers are presented in Tab. 10.

In the case of the signal collected from 26 cognitive electrodes evidently the best one is the proposed 1D-CNN model
achieving 80% accuracy with the best loss, F1 and precision characteristics. The one-layer LSTM has much lower
accuracy (68%) but its recall is the highest reaching 0.83. The accuracy of the EEGNet reached 0.76 and 1D-CNN-
LSTM 0.75 which were lower by 5% compared with the best one 1D-CNN. The other parameters like F1 and precision
are of the same order of value, relatively similar but none is as good as that for 1D-CNN-LSTM. The collection and
comparison of all results of the discussed classifiers are presented in Tab. 11.

Better performance on 26 electrodes (accuracy of 81% for 1D-CNN vs 77% for 1D-CNN-LTSM) can be the result of
putting more influential data for feature extraction and automatically selecting those of greater significance for the task
than the manually selected subset of 256 electrodes or in special case all of them.

Thus it was proved that from the computational point of view it is even more beneficial to collect fewer data for such
tasks and expanding the cap to 256 electrodes does not always add a significant value.

There is still place for improving those models by training them with more data from more subjects. There is also
need to test if best models work well for the data gathered from female subjects. Also finding new architecture for this
task can be a way to reducing number of parameters of the model. It needs to be investigated how other electrodes
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Table 7: 1D-CNN Model Validation Metrics on COGN-26 data set for each fold

Fold ACC Loss F1 Precision Recall
1 0.8833 0.2768 0.8848 0.8740 0.8958
2 0.7583 0.9046 0.8041 0.6761 0.9917
3 0.6854 0.7771 0.5519 0.9588 0.3875
4 0.9312 0.2232 0.9281 0.9726 0.8875
5 0.8188 0.4445 0.7981 0.9005 0.7167
6 0.7792 0.5075 0.7166 1.0000 0.5583

Avg 0.8094 0.5223 0.7806 0.8970 0.7396
Std. 0.0886 0.271 0.1341 0.1179 0.2312

Table 8: 1D-CNN-LSTM Model Validation Metrics for FULL-256 data set for each fold

Fold ACC Loss F1 Precision Recall
1 0.7292 0.6919 0.7789 0.658 0.9542
2 0.7500 1.069 0.7993 0.6676 0.9958
3 0.8583 0.3907 0.8373 0.9831 0.7292
4 0.7167 0.9444 0.7247 0.7047 0.7458
5 0.8875 0.2449 0.8945 0.8419 0.9541
6 0.6938 1.214 0.5638 0.9794 0.3958

Avg 0.7726 0.7591 0.7664 0.8058 0.7958
Std. 0.0803 0.3852 0.1144 0.1510 0.2268

subsets, like 10-20 international systemChatrian et al. [1985] can affect performance of classification using the described
architecture.

Another aspect of improvements that can be applied is the parameter tuning for the models. In our opinion, based on
the previous experience Wojcik et al. [2023] this could increase the accuracy of the models by 3%-5%.

Then, there can be designed more complex hybrid architectures, involving other methods of EEG signal analysis
Kawala-Janik et al. [2014], Kahankova et al. [2017] or eg. the fuzzy logic approach Mikołajewska et al. [2017],
Prokopowicz et al. [2017]

The research presented here can shed new light on the engineering of new brain-computer interfaces with application
for psycho-therapists and neuro-therapists using the relaxation techniques and Guided Imagery method.
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Table 9: 1D-CNN-LSTM Model Validation Metrics for COGN-26 data set for each fold

Fold ACC Loss F1 Precision Recall
1 0.7688 0.5999 0.7861 0.7312 0.9758
2 0.7542 1.3300 0.8027 0.6704 1.0000
3 0.7250 1.2670 0.6207 1.0000 0.4500
4 0.7771 0.5214 0.8165 0.6939 0.9917
5 0.7271 0.566 0.7207 0.7380 0.7042
6 0.7813 0.7457 0.7200 1.0000 0.5625

Avg 0.7556 0.8383 0.7445 0.8056 0.7807
Std. 0.0247 0.3648 0.0732 0.1526 0.2423

Table 10: Evaluation of Metrics for Different Models for the FULL-256 data set. The best result for every metric is
reported in bold.

Model ACC Loss F1 Precision Recall
EEGNet 0.7615 0.6014 0.75995 0.79045 0.7861
LSTM 0.7250 1.0466 0.7331 0.7257 0.7986
1D-CNN 0.7682 0.6826 0.7698 0.7942 0.7931
1D-CNN-LSTM 0.7726 0.7592 0.7664 0.8058 0.7958
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